From CAD Models to Toy Brick Sculptures: A 3D Block Printer

Yusuke MAEDA, Ojiro NAKANO, Takashi MAEKAWA and Shoji MARUO (Yokohama National University, JAPAN)

#blocks: 104

#blocks: 95

#blocks: 191

#blocks: 118

Overview

- A robotic 3D printer that uses toy bricks as digital material is presented
- A 3D CAD model is automatically converted into a block model consisting of primitive blocks
- An assembly plan of the block model is automatically generated
- A toy brick sculpture is automatically assembled layer by layer according to the plan by a robot

Background

- Digital materials including LEGO-like blocks can be used for additive manufacturing
 - "Voxel Printing" [Hiller and Lipson 2009]
 - Perfect repeatability
 - Multiple materials
 - Smart voxels

• ...

Objective

 To develop a robot system that assembles LEGO-like toy blocks to produce brick sculptures

Layer-by-layer assembly of brick sculpture

Related works

 A "VoxJet" Printer with spherical voxels [Hiller and Lipson 2009]

• A SCARA robot that assembles cubes with gluing [Medellin et al. 2010]

https://sites.google.com/site/jonhiller/hardware/rapid-assemblers/voxjet

https://pure.strath.ac.uk/portal/files/365120/Automatic_generation_of_robot_and_manual_assembly_plans.pdf

• A parallel robot that assembles truncated octahedra with magnetic connectors ("Kelvin blocks") [Sekijima et al. 2015]

• ...

Building blocks

"nanoblock" by Kawada

Conversion from a 3D CAD model to a block model

- An automatic conversion method [Kozaki et al. 2016] is adopted
 - A 3D CAD model in OFF (Object File Format) is converted to unit voxels with edge length ratio of 4:4:3
 - Then the voxels are replaced by the primitive blocks so that the number of blocks are reduced using simulated annealing
 - The reference point for the replacement is shifted one unit in column and row directions for each layer to strengthen the

assembled structure

Assembly planning (1/2)

Assembly success depends on the order of block placement

Assembly planning (2/2)

- Assumption
 - Bottom-to-top, layer-by-layer assembly
 - Block placement by vertical insertion
- Assembly planning requires:
 - Block assemblability check
 - In-layer block placement ordering

Block assemblability check: Contact region inclusion

Block assemblability check: Contact edge inclusion

Block assemblability check: Multi-stud connection (1/2)

Block assemblability check: Multi-stud connection (2/2)

Change of block assemblability

Block placement ordering: Prioritization

Force control in assembly

Experimental Setup

Assembly experiments

#blocks: 104

#blocks: 95

#blocks: 191

#blocks: 118

