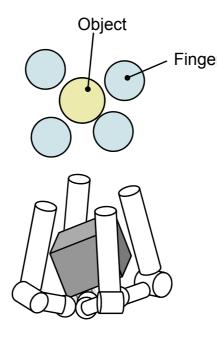
# **Geometry-Based Manipulation through Robotic Caging**

### Yusuke MAEDA\*, Tomohiro ASAMURA\*\*, Tomohiro EGAWA\*\*\*, and Yuuri KURATA\*

\*Yokohama Nat. Univ. \*\*Mitsubishi Electric Corp. \*\*\*Okuma Corp.


Caging is a method to confine object configurations by a closed region made by robot bodies. It can be used as a substitute for or a complement to conventional grasping in robotic manipulation. Because caging is a geometrical concept, manipulation via caging falls into a class of "geometry-based manipulation." Geometry-based manipulation can be performed by position-controlled robots according to only geometrical information, which is a merit for the present level of robot technology. In this paper, we discuss three forms of geometry-based manipulation via caging: caging manipulation by robots and walls, in-hand caging manipulation, and caging-based grasping by robot fingers with soft skins. We present basic ideas and some experimental results of them.

### Introduction

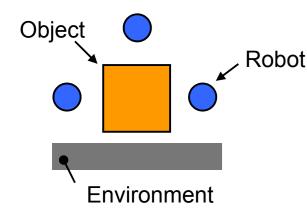
Caging: Geometry-based manipulation

- No need for force sensing/control
- Only geometrical information is necessary

Useful for manipulation tasks



There exist many studies on conventional robotic caging


Objective: Exploring new forms of geometry-based manipulation via caging

Those may not be humanlike, but can be suitable to today's robots

### Caging by Robots and Walls

Caging by not only robots, but also walls

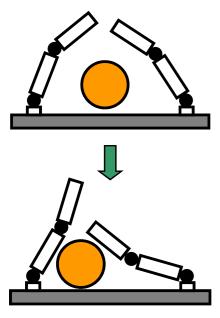
Manipulation by three circular robots with an RRT-based planner



- Caging with smaller number of robots
- Caging in narrow passages
- Sensorless manipulation
- Manipulability is not trivial

#### Manipulability

- Robot-only caging: objects can be manipulated with fixed robot formations
- · Caging by robots and walls: changeability of
  - the closed caging region can be formulated as manipulability in a broad sense
  - The closed caging region should not shrink discontinuously or divide



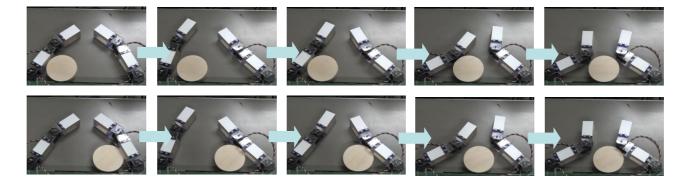

Manipulation by two circular robots with an RRT-based planner



## In-Hand Caging Manipulation

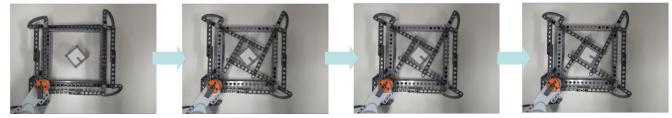
#### In-hand manipulation with objects caged



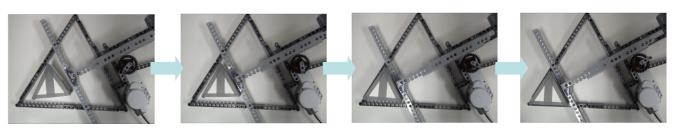

- Position-control-based in-hand manipulation
- Sensorless manipulation
- Manipulability is not trivial

#### Manipulation with an RRT-based planner (to left corner)



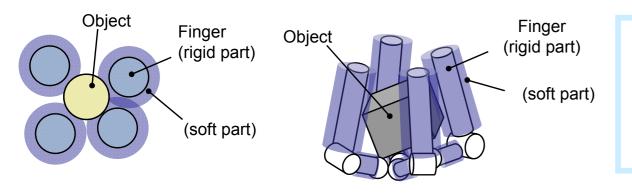



#### Manipulation with an RRT-based planner (to center)




#### Minimalistic examples

#### 1-DOF hand for square objects




#### 1-DOF hand for triangular objects

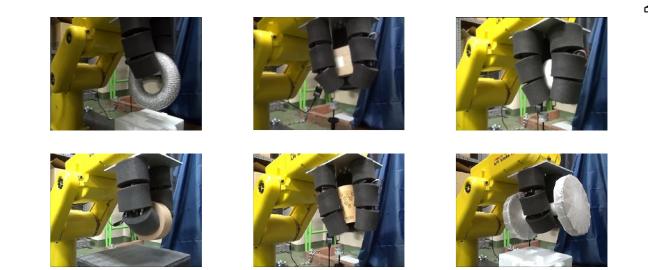


### Caging-based Grasping by Rigid Fingers with Soft Skins

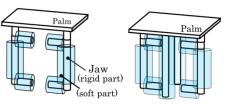
#### An object is caged by rigid parts and simultaneously grasped by soft parts



#### Position-control-based grasping with geometrical information


- Very robust
- Grasping with partial object information

#### Requirements


- *Rigid-part caging condition*: The object is caged in a closed region formed by the rigid parts of the robot hand.
- Soft-part deformation condition: Assuming that the soft parts of the robot hand become rigid, the closed region for caging becomes empty.

Both can be tested geometrically and explicit mechanical analysis is not necessary

#### Grasping by two- or three-fingered articulated hands



#### Grasping by two- or four-jaw grippers





