Analysis of Indeterminate Contact Forces in Robotic Grasping and Contact Tasks

> <u>Yusuke MAEDA</u>, Koutarou ODA and Satoshi MAKITA (Yokohama National University)

Background

- Analysis of contact forces: necessary in various fields in robotics
 - Grasping
 - Manipulation
 - Fixturing
 - Walking

- Rigid-body + Coulomb friction
 - simple and widely used
 - Contact forces can be indeterminate

Coulomb friction

- A friction force must be within its friction cone
 - "Local" constraint on the feasibility

Question: Is every combination of locally-feasible friction forces also feasible?

Answer: No!

Combination of friction forces

("Global" constraint on combinations of friction forces)

Constraint on combinations of [Omata and Nagata 00 T-RA] friction forces [Omata 01 ICRA]

- A static friction force acts only in the opposite direction of the trend of virtual sliding
- Only a part of combinations of virtual slidings are feasible due to contact kinematics

Only a part of combinations of static friction forces are feasible

Relationship between sliding and friction

 Virtual sliding must be distinguished from actual sliding

Contacts in actual sliding	Contacts not in actual sliding	
	in virtual sliding	not in virtual sliding
Kinetic friction	Static friction	No friction
	(Actual sliding is prevented by static friction)	(No need to prevent sliding by static friction)

Omata's formulation [Omata 01 ICRA]

Constraint on virtual sliding

- Virtual sliding velocity (\dot{Y}) that satisfies this constraint is feasible
- $\Box \rangle$
- We can find feasible friction forces by investigating feasible \dot{Y}

Unreasonable results in Omata's formulation (1)

 Adding a contact point makes a grasp infeasible

Unreasonable results in Omata's formulation (2)

Objective

- To modify Omata's formulation to exclude such unreasonable results
 - We present a procedure to calculate the set of possible indeterminate contact forces
 - We also present a technique for computation reduction

Why such unreasonable results?

 Problem in Omata's formulation:
Constraint on actual instantaneous sliding is applied to virtual sliding

$$\begin{bmatrix} W^T & J \end{bmatrix} \begin{bmatrix} V \\ -\dot{\theta} \end{bmatrix} = T\dot{Y}$$

- Some valid virtual slidings are excluded
- Thus some feasible friction forces are also excluded

A new relaxed constraint (1)

 Constraint on virtual sliding of each subset of contacts

$$\begin{array}{c} & \\ \hline B \\ \hline W^T & J \end{array} \begin{bmatrix} V \\ -\dot{\theta} \end{bmatrix} = T \dot{Y}$$

 $B := \operatorname{diag}(b_1 I_3, \dots, b_M I_3) \in \Re^{3M \times 3M}$: selection matrix $b_i = \begin{cases} 1 & \text{when } P_i \text{ is in virtual sliding,} \\ 0 & \text{otherwise.} \end{cases}$

When B = I: Identical solution to Omata's formulation Otherwise: Additional solutions may be found

A new relaxed constraint (2)

$$\begin{array}{c} \hline B \\ \hline W^T & J \end{array} \begin{bmatrix} V \\ -\dot{\theta} \end{bmatrix} = T\dot{Y}$$

 \boldsymbol{B} : selection matrix

- Only selected contact points are constrained by contact kinematics
- Unselected contact points cannot generate static friction forces
- Consider every subset of contacts to obtain total set of contact forces

Example: Application of new constraint (2)

15

Procedure to calculate the set of indeterminate contact forces

Set of possible indeterminate contact forces for each subcase: solution of linear inequalities

$$egin{pmatrix} f=Ck, \ k\geq 0 < ext{Coulomb friction} \ A^Tf=w < ext{equilibrium equation} \ T^T(I_{3M}-B)f=0 < ext{unselected contacts cannot} \ generate friction forces \ ST^Tf\leq 0 < ext{friction forces act only to} \ prevent virtual slidings \ \end{array}$$

Total set of possible indeterminate contact forces: union of the above solutions

Problem in new formulation

- Calculation for every subset of contact points
 - Combinatorial computation
 - Exponential complexity w.r.t. the number of contact points

\Box Computation reduction is desired

A sufficient condition to skip unnecessary subsets

- Fingertip link has only one contact point and a matrix \boldsymbol{Z} is nonsingular
- In this case, we can safely ignore the subsets in which the contact point is unselected
 - Proof: see proceedings
 - Z is usually nonsingular

Special cases where computation reduction is inapplicable

- Cases where Z is singular:
 - Contact point motion caused by outermost joint is in contact tangent space

Summary

- Omata's formulation on indeterminate contact forces generates unreasonable results in some cases
- A modified formulation to exclude such unreasonable results is proposed
 - Procedure to calculate the set of possible indeterminate contact forces
 - Technique for computation reduction

Future work:

- Application to various problems of robotic grasping and manipulation [Maeda 05 ICRA] [Maeda 06 ICRA] [Makita 07 ISHF]
- Further computation reduction