View-Based Teaching/Playback for Grasp and Graspless Manipulation

Yusuke MAEDA*, Takahito NAKAMURA** and Takumi WATANABE* *Yokohama National University

**Nikon Corp.

Background

Conventional Teaching/Playback

- still widely used
- versatile
- for constant task conditions
 - e.g.) initial pose of object does not change

If the initial object pose is not constant...

Object localization with cameras

- Model-based image processing
 - Feature extraction: edge, vertex, …
 - Pattern matching
- Object-specific: versatility is limited

Motivation

To develop a **versatile** robot programming method that can deal with change of task conditions

View-based teaching/playback: robot programming with view-based image processing

Model-based vs. View-based

- Model-based approach
 - with object-specific models
 - accurate
- View-based (Appearance-based) approach
 - without object-specific models
 - versatile

1. Hum ab teling bastra applie of petintorgegre telinds i arrobot to perform candiagipulation mapping

Mapping from image to motion (1)

Neural network

View-based teaching/playback

- View-based image processing using PCA
 - not object-specific
 - no need for camera calibration
- Adaptability to change of the initial pose of the object using the generalization ability of neural networks
 - generalization from multiple demonstrations

Virtual Manipulation Environment for Proof of Concept

PC + Data glove + Dynamics Simulator

Data Glove for Teaching

P5 Glove (for games)

6 DOF for palm and 1 DOF for each finger (bending)

Virtual Hand

- PD-controlled according to glove input in ODE (Open Dynamics Engine)
- 8 DOF
 - 6 DOF for palm
 - 1 DOF for thumb
 - 1 DOF for index finger

Target Manipulation

 Grasp Manipulation (pick-and-place)

Graspless
Manipulation
(pushing)

Camera images in virtual environment

- Simulate actual camera images
 - Grayscale
 - Change of lighting conditions
 - Salt-and-pepper noise

Coping with noise and change of lighting conditions

- Median filtering
- Histogram normalization
 - By gamma correction

Teaching and Playback of Grasp Manipulation

Teaching

(brighter)

Playback

Teaching and Playback of Graspless Manipulation

Teaching

(darker)

(brighter)

Playback

Dealing with fluctuation of initial object positions

- Demonstrations from 9 different initial positions
- 100 Playbacks from random initial positions

	Dar
1% Noise	
5% Noise	

Conclusion

- View-based teaching/playback is proposed and implemented on a virtual environment.
- It can adapt to the change of initial pose of the object in grasp and graspless manipulation tasks.

Future Work

Application to actual
Reinforcement
industrial robots
learning

Yusuke MAEDA and Yuki MORIYAMA (Yokohama National University)

