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Abstract—In this paper, we study a method of robot program-
ming with view-based image processing. It can achieve more
robustness against changes of task conditions than conventional
teaching/playback without losing its general versatility. In order
to reduce human demonstrations required for the view-based
robot programming, we integrate reinforcement learning with
the method. First we construct an initial neural network as a
mapping from images to appropriate robot motions using human
demonstration data. Next we train the neural network with actor-
critic reinforcement learning so that it can work well even in task
conditions that are not identical to those in the demonstrations.
Our proposed method is successfully applied to pushing and pick-
and-place tasks in a virtual environment.

I. INTRODUCTION

Conventional teaching/playback is still popular in robot
programming for its simplicity. It is dependent on only internal
sensors of robots and applicable to various tasks. Moreover, it
is very reliable as far as task conditions, e.g. initial pose of the
manipulated object, do not change. However, it is impossible
for a robot to adapt to nontrivial variations in the initial pose
of the object or unexpected fluctuations in the pose of the
object during manipulation.

Thus image-based detection of the object is also widely
used to adapt variations in the pose of the object. Model-based
image processing such as feature extraction and pattern match-
ing is performed to obtain the pose of the object accurately. In
such model-based methods, however, how to detect an object is
specific to the object. Therefore it is cumbersome for operators
to register object models with the detection system and the
general versatility of this method is limited.

In order to achieve more robustness against changes of task
conditions than conventional teaching/playback without losing
its general versatility, a robot programming method, “view-
based teaching/playback” was proposed [1]. It uses PCA (Prin-
cipal Component Analysis) to perform image processing that
is not specific to the target object. Such model-free approaches
are called “view-based” or “appearance-based” [2]. Our view-
based teaching/playback also uses the generalization ability of
artificial neural networks to obtain robustness. It was applied
to pick-and-place and pushing in a virtual environment. Using
multiple human demonstrations in the teaching phase, a virtual
robot moved an object successfully to the goal position in the

playback phase, even from some initial positions different from
those in the demonstrations.

In this paper, in order to reduce human demonstrations
required for the view-based teaching/playback, we integrate
reinforcement learning with the method. First we construct an
initial neural network as a mapping from images to appro-
priate robot motions using human demonstration data. Next
we update the neural network with actor-critic reinforcement
learning [3] so that it can work well even in task conditions
that are not identical to those in demonstrations. Our proposed
method is successfully applied to box-pushing and pick-
and-place tasks in a virtual environment consisting of a 3D
dynamics simulator.

II. RELATED WORK

Shibata and Iida dealt with reinforcement learning of box
pushing by a mobile robot with an artificial neural network in
a view-based approach [4]. Kobayashi et al. proposed a vision-
based method for reinforcement learning of robot motion with
adaptive image resolution adjustment [5][6]; they applied it to
pushing by a manipulator.

Both of the studies basically focused on reinforcement
learning from scratch. On the other hand, from a practical
point of view, reinforcement learning is used after supervised
learning in our view-based programming.

III. OVERVIEW OF VIEW-BASED ROBOT PROGRAMMING
WITH REINFORCEMENT LEARNING

Our view-based robot programming method consists of the
following steps:

1) View-based supervised learning from human demonstra-
tion.

a) A human operator commands a robot to perform a
manipulation task (Fig. 1a). All the motions of the
robot are recorded. All the images of the teaching
scenes are also recorded.

b) A mapping from the recorded images to the mo-
tions is obtained as an artificial neural network
(Fig. 1b). Basically the input of the neural network
is a scene image, and its output is the desirable
robot motion corresponding to the image.
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Fig. 2. Virtual Environment

2) View-based reinforcement learning for performance im-
provement.

a) Manipulation in which the task condition is not
identical to those in the human demonstrations is
performed using the obtained mapping (Fig. 1c).
The motion of the robot is determined by the output
of the neural network calculated from scene im-
ages. Initially the motion may not be appropriate,
but the mapping from images to robot motions is
gradually updated with actor-critic reinforcement
learning.

b) As reinforcement learning goes on, the mapping
is improved so that it can adapt to wider range of
changes in task conditions.

Supervised learning, the first part of our method, is sufficient
to play back human demonstrations and to adapt small range of
changes in task conditions [1]. For more adaptability, however,
we perform reinforcement learning, the latter part.
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Fig. 3. Finger Bending

IV. VIRTUAL ENVIRONMENT FOR MANIPULATION TASKS

We prepared a virtual environment for proof of concept
of our view-based robot programming with reinforcement
learning. A virtual robot hand (Fig. 2) is created on a dynamics
simulator, ODE (Open Dynamics Engine) [7]. For simplicity,
the hand has only five degrees of freedom: 3 DOF for
translation (x, y and z directions), 1 DOF for rotation around
its yaw axis (θ), and 1 DOF for finger bending. The hand
has a “thumb” with three joints and an “index finger” with
three joints. Bending of them is controlled with only one angle
parameter, α as shown in Fig. 3.

In the teaching phase, the degrees of freedom of the hand
are PD-controlled based on human keyboard commands. Thus
a human operator can drive the virtual robot hand and manip-
ulate an object (a cube) in the virtual environment. Scenes of
the virtual environment can be obtained as grayscale camera
images of 256× 256 pixels.

V. VIEW-BASED SUPERVISED LEARNING

In our method, a human operator commands a robot with
a keyboard to perform a manipulation task. Here we call
it demonstration. The pairs of the movement of the robot
(Δx) and the scene image were recorded throughout the
demonstrations.

A scene image I is composed of numerous pixel data and
therefore it is not realistic to use raw pixel data as the input of
the neural network. Here we use PCA (Principal Component
Analysis) for all the recorded images as view-based image
compression. Even a small number of factor scores [8] can
reconstruct the original image approximately as follows:

I = Iavg +

Npixel∑
i=1

wiui ≈ Iavg +

NPC∑
i=1

wiui, (1)

where Iavg is the average of images in the demonstration,
Npixel is the number of pixels of the camera image, wi

are factor scores, ui are principal components, and NPC is
the number of principal components to be used for approx-
imation (NPC � Npixel). Thus we use the factor scores,
w1, . . . , wNPC , as the input of the neural network instead of
the raw pixel data.

We use a feedforward neural network as shown in Fig. 4
for supervised learning. It is three-layered and has Nhidden

neurons in its hidden layer. The input of the neural network
is the current state (at time t), st = [wt,at−1], where
wt = [wt1, . . . , wtNPC ] is factor scores for the first NPC

principal components of camera images, and at−1 = Δxt−1

is the action at the previous time step. The output of the neural
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Fig. 4. Neural Network for Mapping from Images to Robot Motions

network is [at, V (st)], where at = Δxt is the action of the
robot and V (st) is the state value. Thus the neural network is
composed of two parts: mapping from states to robot motions
(“actor”) and mapping from states to state values (“critic”).
The latter is added for actor-critic reinforcement learning,
which is described in the next section.

We train the neural network with backpropagation with
momentum (BPM) [9]. The training signals for the input of
the neural network are states (st) in the demonstration. The
training signals for the actor part of the output of the neural
network are robot motions (at) in the demonstration. The
training signals for the critic part of the output are state values
(V (st)), which are calculated as follows:

V (sT ) = 0 (2)
V (st−1) = γV (st) + rt, (3)

where T is the time step when the demonstration reached the
goal; γ is a discount factor; rt is a reward at time t, which is
described in detail in Section VI-B.

The trained neural network (the actor part) can be used to
control the robot hand to play back the demonstrations [1].

VI. VIEW-BASED REINFORCEMENT LEARNING

A. Actor-Critic Reinforcement Learning

Here we present the details of our view-based reinforce-
ment learning to improve the neural network obtained in the
supervised learning. It is based on actor-critic used in [4] to
explore a continuous parameter space.

The TD (temporal-difference) error [3] is given as follows:

TDerror = rt+1 + γV (st+1)− V (st). (4)

In order to reduce the TD error, we adjust the neural network
to modify the output of the critic. The desired output of the
critic Tc for st is determined as follows:

Tc(st) = V (st) + β(TDerror), (5)

where β(> 0) is a constant parameter.
Reinforcement learning requires exploration and therefore

we have to modify the actor output. In our method, the actual

robot motion a′
i(st) in reinforcement learning is generated as

follows:

a′
i(st) = ai(st) +Rt +Re, (6)

where ai(st) is the output of the actor, and Rt and Re

are random vectors from Gaussian distribution for exploration
calculated as follows:

Rt = [Rt1, . . . , Rtn]
T (7)

Rti =
√
−2σ2

i log rand() sin(2π · rand()) (8)

Re = [Re1, . . . , Ren]
T (9)

Rei =
√
−2σ2

ei log rand() sin(2π · rand()), (10)

where rand() is a uniform random value in [0,1], and σ2
i

and σ2
ei are variances of the Gaussian distribution, which are

described in Section VI-B. Note that Rt is updated at each
time step t in one episode, while Re is updated at each episode
(that is, it is constant in one episode).

The desired output of the actor Ta for st is given as follows:

Ta(st) = a(st) + ρ(TDerror)(a
′(st)− a(st)), (11)

where ρ(> 0) is a constant parameter.
In the end of an episode, the neural network is retrained

by BPM using desired actor and critic outputs ((5) and (11))
obtained in the episode in addition to the teaching signals
obtained in the demonstration in supervised learning.
Nmax episodes are repeated in reinforcement learning to ob-

tain an improved neural network that can achieve manipulation
tasks in wider task conditions.

B. View-based Reward

Design of appropriate reward rt is necessary for successful
reinforcement learning. In order to carry the object to the
goal, the Euclidean distance between the object and the goal is
useful to design the reward function. In our method, however,
the distance cannot be obtained explicitly because we use
view-based approach. Thus we have to find a view-based
alternative for the distance.

Here we define an image-based distance function as follows:

DI(I1, I2) =

Npixel∑
j=1

|I1j − I2j |
Npixel

, (12)

where Ii is a camera image and [Ii1, . . . , IiNpixel
] is its [0,1]-

normalized pixel values. We use DI(I, IG), where IG is the
camera image at the goal in the demonstration, instead of the
Euclidean distance between the object and the goal.

Fig. 5 is a plot of DI(I, IG) versus the Euclidean distance
between the object and the goal in a case. The image-based
distance is not fully proportional to the Euclidean distance,
but it can be used for its substitute to some extent.

We can obtain not the Euclidean distance between the object
and the goal, but the Euclidean distance between the current
position and the goal position of the hand as follows:

DH(x,xG) =
√
(x− xG)2 + (y − yG)2 + (z − zG)2, (13)
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Fig. 5. Euclidean Distance and Image-based Distance

where xG = [xG, yG, zG] is the position of the hand at the
goal in the demonstration.

We define a reward function using these distance functions
as follows:

rt = −αIDI(I, IG)− αHDH(x,xG), (14)

where αI and αH are weight coefficients. The reward can be
regarded as a penalty for staying away from the goal.

The view-based reward (14) is also used for the goal
condition. When rt becomes equal to or larger than rgoal,
a threshold, we terminate the robot motion and finish the
episode.

We also finish the episode when the goal condition is not
satisfied in tmax steps. In this case, additional reward rfail(< 0)
is given as a penalty.

The view-based reward (14) is also used to control explo-
ration as follows:

σi =

{
σnormali when rmax < rgoal,
σgoali when rmax ≥ rgoal,

(15)

where σgoali < σnormali and rmax is the maximum reward
obtained in the previous episode.

σei =

{
Ci(Nmax −N) when rmax < rgoal,
0 when rmax ≥ rgoal,

(16)

where N is the current number of episodes, and Ci is a
coefficient. Those are to restrict exploration when the goal
is reached in the previous episode.

VII. LEARNING EXPERIMENTS

Using our proposed method, we performed learning exper-
iments in the virtual environment presented in Section IV.
The manipulation tasks were pushing and pick-and-place.
Parameters for the experiments are found in TABLE I. We
used a PC with Core i7-870 CPU (at 2.93 GHz) and GeForce
GTX 460 GPU.

A. Pushing

Programming of pushing the object to a goal position by
the robot hand was tested. For simplicity, we made z and α
unchanged; that is, the robot hand had only three degrees of
freedom (x, y and θ) in this experiment.

(a) (b) (c) (d) (e) (f)

Fig. 6. Human Demonstration of Pushing

(a) (b) (c) (d) (e) (f)

Fig. 7. Pushing before Reinforcement Learning

(a) (b) (c) (d) (e) (f)

Fig. 8. Pushing after Reinforcement Learning

In view-based supervised learning, a human operator
demonstrated pushing with keyboard commands (Fig. 6). From
this demonstration, 100 scene images were taken and an initial
neural network was generated. The initial neural network can
drive the virtual robot hand to push the object to the goal when
the initial position of the object is in the neighborhood of that
in the demonstration. Fig. 9a shows the range of the initial
positions from which pushing to the goal is successful.

Next, view-based reinforcement learning was performed. In
the reinforcement learning, the object was initially located at
a shifted position from which the initial neural network was
not able to carry it to the goal (Fig. 7). After Nmax episodes

TABLE I
PARAMETERS FOR EXPERIMENTS

Pushing Pick-and-Place
Nhidden 100 100
NPC 100 100
Npixel 256 × 256 256 × 256
Nmax 1000 1000
β 0.1 0.3
ρ 0.1 0.03
αI 1.0 0.5
αH 0.1 0.1
γ 0.98 0.98

σnormali 0.1 0.1
σgoali 0.01 0.01
Ci 0.05 0.05

rgoal −0.011 −0.018
rfail −10 −10
tmax 120 120

TABLE II
AVERAGE COMPUTATION TIME FOR REINFORCEMENT LEARNING [S]

PCA 2 806
BPM 130

Dynamics simulation and others 3 265
Total 6 201
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in reinforcement learning, an updated neural network was
obtained. It can drive the virtual hand to the goal not only from
the initial position of the object in the human demonstration
but also from the shifted position (Fig. 8). Fig. 10 shows
average cumulative reward in successful cases. TABLE II
shows average computation time for reinforcement learning
in successful cases

The range of the initial position of the object for successful
manipulation after reinforcement learning is shown in Fig. 9b.
It is found that wider variations in the initial position are
allowed after reinforcement learning.

B. Pick-and-Place

Programming of picking the object up and placing it to a
goal position by the robot hand was tested. For simplicity, we
made y and θ unchanged; that is, the robot hand had only
three degrees of freedom (x, z and α) in this experiment.

In view-based supervised learning, a human opera-
tor demonstrated pick-and-place with keyboard commands

(a) (b) (c) (d) (e) (f)

Fig. 11. Human Demonstration of Pick-and-Place

(a) (b) (c) (d) (e) (f)

Fig. 12. Pick-and-Place before Reinforcement Learning

(a) (b) (c) (d) (e) (f)

Fig. 13. Pick-and-Place after Reinforcement Learning

TABLE III
AVERAGE COMPUTATION TIME FOR REINFORCEMENT LEARNING [S]

PCA 2 526
BPM 481

Dynamics simulation and others 3 887
Total 6 894

(Fig. 11). From this demonstration, 100 scene images were
taken and an initial neural network was generated. The initial
neural network can drive the virtual robot hand to carry the
object to the goal when the initial position of the object is in
the neighborhood of that in the demonstration (Fig. 14a).

Next, view-based reinforcement learning was performed. In
the reinforcement learning, the object was initially located at a
shifted position from which the initial neural network was not
able to carry it to the goal (Fig. 12). After Nmax episodes
in reinforcement learning, an updated neural network was
obtained. It can drive the virtual hand to the goal not only from
the initial position of the object in the human demonstration
but also from the shifted position (Fig. 13). Fig. 15 shows
average cumulative reward in successful cases. TABLE III
shows average computation time for reinforcement learning
in successful cases.

The range of the initial position of the object for suc-
cessful manipulation after reinforcement learning is shown in
Fig. 14b. It is found that wider variations in the initial position
are allowed after reinforcement learning.

C. Discussion

The experimental results show that our view-based robot
programming with reinforcement learning can achieve adapt-
ability autonomously.

A major problem in our reinforcement learning is the local
maximum trap. We have to explore a continuous parameter
space, which usually has numerous local minima. Due to this
problem, the success rate of reinforcement learning is about



-0.20 -0.10 0.00 0.10 0.20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Teaching
point
Learning 
point
Success
Failure

X 

Y
 

(a) before RL

-0.20 -0.10 0.00 0.10 0.20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Teaching 
point
Learning 
point
Success
Failure

X 

Y
 

(b) after RL

Fig. 14. Range of Initial Object Positions for Successful Pick-and-Place

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

0 200 400 600 800 1000

number of episodes

cu
m

ul
a

tiv
e 

re
w

ar
d

Fig. 15. Average Cumulative Reward

25%. However, we can restart our reinforcement learning,
which uses randomness for exploration, until learning success.
Because computation time for reinforcement learning in Nmax

episodes is about 7000 [s], the expected computation time until
learning success can be estimated as follows:

7000× (1×0.25+2×0.75×0.25+3×0.752×0.25+ · · · )
= 28000 [s] ≈ 8 [h]. (17)

For more efficient reinforcement learning, improvement of
our method including the design of the reward function is
necessary.

VIII. CONCLUSION

In this paper, we proposed view-based robot programming
with reinforcement learning. It is an extended version of view-
based teaching/playback [1] so that it can adapt to wider
range of changes in task conditions without more human
demonstrations.

In the learning experiments, our method acquired a mapping
from camera images to robot motions after view-based super-
vised and reinforcement learning. The mapping can generate
appropriate robot motions for pushing and pick-and-place not
only from the initial position of the object in the human
demonstration but from different initial positions.

Future work should address the improvement of the method
for effective reinforcement learning. Application to manipu-
lation tasks by actual robots should also be addressed. We
have already applied view-based teaching/playback without
reinforcement learning to pushing by an actual manipulator
successfully [10], but successful introduction of reinforcement
learning would require more effective learning.
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