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Abstract— In this paper, we study excessive internal forces
applied to manipulated objects in robotic contact tasks. Such
internal forces may cause serious damage to the objects and/or
robots; thus, prior assessment of the possibility of excessive
internal forces is very important.

We propose a method to judge the possibility of excessive
internal forces on manipulated objects. The judgment is based
on rigid-body mechanics with Coulomb friction and given by
solving a series of linear programming problems. We show
some numerical examples of the judgment by our proposed
method.

Index Terms— Internal Force, Robotic Contact Tasks, Lin-
ear Programming

I. INTRODUCTION

In robotic contact tasks, excessive internal forces might
be generated on objects in contact with the environment
(Fig. 1). Especially when we use position-controlled robots,
even minute positional errors of the robots may generate
excessive internal forces on the objects, which leads to
serious damage to the objects and/or the robots. Therefore,
prior assessment of the possibility of excessive internal
forces is highly important for planning and execution of
robotic contact tasks. For example, in planning of graspless
manipulation [1] (or nonprehensile manipulation [2]), ap-
propriate assignment of position control and force control
to robot fingers can be performed based on the assessment
of the possibility of excessive internal forces [3].

Some related studies can be found in the field of
assembly, fixturing, and robotic manipulation. Asada and
By formulated the notion of “bilateral constraints” in the
analysis of fixturing [4]. Bilateral constraints correspond
to the possibility of excessive internal forces in frictionless
cases, because normal forces of arbitrary magnitude by the
contacts that form a bilateral constraint can cancel each
other and be increased unlimitedly. Trinkle defined a class
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Fig. 1. Excessive Internal Force

of equilibrium as “strong force closure,” where grasped
objects can be subject to unbounded contact wrench [5].
Frictionless strong force closure can be tested by linear
programming. Hirai and Asada presented an algorithm to
judge the existence of bilateral constraints based on the
theory of polyhedral convex cones [6]. Bicchi showed that
“internal passive contact forces,” which include excessive
internal forces, exist in the intersection of the null space
of grasp matrix and that of the transpose of hand Jacobian
matrix [7].

The authors presented a method to judge the possibility
of excessive internal forces on objects in robotic contact
tasks with Coulomb friction [8]. The judgment is given by
solving a linear programming problem based on rigid-body
statics. However, the method tests only a weak necessary
condition; it sometimes says that there is a danger of
excessive internal forces even when they could not be
generated (see examples in Section V). This is because
the method does not consider some constraints on static
frictional forces at the contacts.

In this paper, we present a method for more accurate
judgment of the possibility of excessive internal forces
than our previous one. The new method is based on the
constraints on static frictional forces that were originally
derived by Omata and Nagata [9] [10] for power grasps.

II. PROBLEM STATEMENT

A. Assumptions

Let us consider robotic contact tasks as shown in Fig. 2,
where an object in contact with the environment is manip-
ulated by robots.

We make the following assumptions to investigate ex-
cessive internal forces on the manipulated object:

1) The object, end-effectors of the robots, and the
environment are rigid.

2) All the contacts can be approximated by finite point
contacts.

3) Static Coulomb friction exists at the contact points.
4) Each of friction cones at the contacts can be approx-

imated by a polyhedral convex cone [6].
5) The robots are position-controlled or force-

controlled.
6) The magnitude of joint torque of the position-

controlled robots has no limit.
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We perform mechanical analysis based on rigid-body stat-
ics with Coulomb friction.

B. Definition of “Excessive Internal Force”

We should make it clear what is “excessive internal
force” before proceeding to mechanical analysis. In this
paper, as same as in [8], infinite internal (generalized)
forces are referred to as “excessive internal forces”; that is,
when infinite internal forces can be exerted on the object,
we say that “there is a possibility of excessive internal
forces.” When contact forces can be increased unlimitedly
without breaking the balance of the forces, the object
cannot escape from infinite (=excessive) internal forces.

Thus, the problem should be tackled here is how to judge
whether infinite internal forces are possible or not based on
rigid-body statics.

III. MECHANICAL MODEL

A. Contact Forces

Let p1, . . . ,pM ∈ �3 be the positions of the contact
points. The friction cone at the i-th contact point is
approximated by a polyhedral convex cone with unit edge
vectors, ci1, . . . , cis ∈ �3. Contact force at the i-th contact
point, f i(∈ �3), can be expressed as:

f i = Ciki (ki ≥ 0), (1)

where Ci := [ci1 . . . cis] ∈ �3×s and ki :=
[ki1, . . . , kis]T ∈ �s.

We can usually ignore contact forces applied by force-
controlled robots because most of them cannot contribute
to the realization of infinite internal forces. However, force-
controlled robots with defective contacts [7] [11] should be
taken into consideration for the judgment of the possibility
of excessive internal forces. This is because defective
contacts may be able to apply contact forces of arbitrary
magnitude in specific directions. Thus, we should consider
contact forces of force-controlled robots that satisfy the
following constraint:

JT
i f i = 0, (2)

where J i ∈ �3×Li is the Jacobian matrix between the
position of the i-th contact point and joint angles of the
corresponding robot; Li is the number of joints of the
robot (Li = 0 for the contacts with the environment).

environment

object

robot

Fig. 2. Model of Robotic Contact Tasks

When the i-th contact is not defective (i.e., rankJT
i = 3),

dim KerJT
i = 0 and therefore its contact force can be

ignored for the judgment of the possibility of excessive
internal forces.

Then we define the following matrices:

W :=
[

I3 . . . I3

p1 × I3 . . . pM × I3

]
∈ �6×3M

C := diag(C1, . . . ,CM ) ∈ �3M×sM

T := diag(T 1, . . . ,T M ) ∈ �3M×2M

T i := [ti1 ti2] ∈ �3×2

J := diag(J1, . . . ,JM ) ∈ �3M×L,

where In is the n × n identity matrix; pi × I3 ∈ �3×3 is
a skew-symmetric matrix defined such that (pi × I3)x ≡
pi × x; ti1, ti2 ∈ �3 are unit tangent vectors at the i-th
contact defined such that tT

i1ti2 = 0; L :=
∑M

i=1 Li.
Now all the contact forces can be represented as follows:

f = Ck (k ≥ 0), (3)

where f :=
[
fT

1 , . . . ,fT
M

]T ∈ �3M and k :=[
kT

1 , . . . ,kT
M

]T ∈ �sM . All the tangential (=frictional)
components of the contact forces are:

T T f = T T Ck ∈ �2M . (4)

The constraints for defective contacts of force-controlled
robots (2) can be unified as follows:

JT Af = JT ACk = 0, (5)

where A is a selection matrix defined as:

A := diag(a1I3, . . . , aMI3) ∈ �3M×3M ,

ai :=




1 when the i-th contact corresponds to a
force-controlled robot.

0 otherwise.

When there are no force-controlled robots, A = O, and
therefore the constraint (5) can be omitted.

The resultant force/moment applied to the object by all
the contact forces that can contribute to the realization of
infinite internal forces is given by:

Wf = WCk ∈ �6. (6)

B. Global Constraints on Possible Contact Forces

Static frictional forces on the contact points represented
as (4) satisfy “local” constraints imposed by Coulomb’s
law. There exist, however, additional “global” constraints
imposed by contact kinematics, which were derived by
Omata and Nagata [9] [10] for power grasps. Here we show
these additional constraints, which are slightly modified
from the original formulation in [9] and [10] due to the
application to robotic contact tasks instead of power grasps.

Let us consider a virtual infinitesimal motion of the
object and the robots that causes sliding at some contact
points. Note that this virtual motion is required only to
derive the constraints on static frictional forces.
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We define a selection matrix that selects contact points
that will slide by the virtual motion as follows:

B := diag(b1I3, . . . , bMI3) ∈ �3M×3M , (7)

where

bi :=

{
1 when the i-th contact point will slide,
0 otherwise.

From contact kinematics, the virtual motion correspond-
ing to B must satisfy the following constraint [10]:

B
[
W T J

] [
V

−θ̇

]
= T Ẏ , (8)

where V = [vT ωT ]T ∈ �6 is the (virtual) veloc-
ity/angular velocity of the object; θ̇ =

[
θ̇

T

1 , . . . , θ̇
T

M

]T ∈
�L and θ̇i ∈ �Li is the (virtual) joint velocity vector
of the robot corresponding to the i-th contact; Ẏ :=[
Ẏ

T

1 , . . . , Ẏ
T

M

]T ∈ �2M and Ẏ i ∈ �2 is the elements of
the (virtual) sliding velocity vector at the i-th contact point
(i.e., T iẎ i is the sliding velocity vector). For convenience,
let Ẏ i = [0, 0]T for contact points that are not selected by
B.

Equation (8) constrains the possible Ẏ ; thus, the possible
signs of the elements of Ẏ are restricted. The possible
signs of the elements of frictional forces, T T Ck, are also
restricted, because static frictional forces can apply only in
the directions that prevent sliding.

Concretely, a combination of the signs of the elements
of T T Ck is impossible if there exists no B that satisfies
(8) for Ẏ whose elements have the same combination of
their signs as T T Ck. In other words, only T T Ck whose
elements have the same combination of their signs as Ẏ
that satisfies (8) is compatible with rigid-body motion.

Let us denote the set of frictional forces that satisfy the
above constraint on the signs of the elements by F and we
have

T T Ck ∈ F . (9)

Note again that we consider not actual sliding but only
virtual sliding in this paper, as well as [9] and [10]. Thus,
the above constraint (9) is that on static frictional forces
before sliding; it is different from constraints on kinetic
frictional forces in sliding, which are dealt with in many
papers such as [12].

IV. JUDGMENT OF THE POSSIBILITY OF EXCESSIVE
INTERNAL FORCES

A. Formulation

In our previous method [8], the judgment of the possi-
bility of excessive internal forces is given by the following
linear programming problem:

maximize 1T k

subject to




WCk = 0
JT ACk = 0
k ≥ 0,

(10)

where 1 = [1, . . . , 1]T ∈ �sM . When WCk = 0, contact
forces can balance one another. If 1T k → ∞, the contact
forces can be infinite without breaking the force balance;
consequently, there is a possibility of excessive internal
forces. Otherwise, 1T k = 0 and there is no possibility of
excessive internal forces.

However, the above judgment does not consider the con-
straint on static frictional forces described in Section III-B.
When we take the constraint (9) into account, we should
solve the following mathematical programming problem
instead of (10):

maximize 1T k

subject to




WCk = 0
JT ACk = 0
T T Ck ∈ F
k ≥ 0.

(11)

B. Algorithm for Judgment

It is not straightforward to solve (11) directly because F
in the constraints makes the problem nonlinear. Thus, we
divide (11) into subproblems that have linear constraints
so that we can judge the possibility of excessive internal
forces by solving a series of linear programming problems.

To define the subproblems based on the signs of the
elements of virtual sliding, we introduce the following
matrix:

S := diag(s11, s12, s21, s22, . . . , sM1, sM2)

∈ �2M×2M ,

where

sij :=




+1 when bi = 1 and the sign of the j-th
element of Ẏ i is positive,

−1 when bi = 1 and the sign of the j-th
element of Ẏ i is negative,

0 when bi = 0.

Then we have:
Ẏ = Sq, (12)

where q(∈ �2M ) > 0.
For a subcase specified by S, we can judge the possi-

bility of excessive internal forces by solving the following
linear programming problem:

maximize 1T k

subject to




WCk = 0
JT ACk = 0
ST T Ck ≤ 0
T T (I3M − B)Ck = 0
k ≥ 0.

(13)

The constraint ST T Ck ≤ 0 is added to represent (9).
T T (I3M − B)Ck = 0 means that the contact points that
are not chosen by B cannot apply frictional forces. As
same as the problem (10), there is a possibility of excessive
internal forces when 1T k → ∞.
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Now we can present a naive algorithm for the judgment
of the possibility of excessive internal forces as follows:

Step 1. Assume a combination of sliding/non-sliding
contact points (namely, determine a selection matrix B).

Step 2. Enumerate all the possible S for the specified B
from the constraint (8). There are 22n patterns for S at
most when B selects n sliding points.

Step 3. Judge the possibility of excessive internal forces
for all the possible S by solving the problem (13). If
there is a possibility of excessive internal forces for a
possible S, stop. Otherwise, go back to Step 1.

Step 4. If all the possible B have been checked, stop.
In this case, there is no possibility of excessive internal
forces.

Considering the constraints on frictional forces (9), the
above procedure enables us to judge the possibility of
excessive internal forces more accurately than our previous
method [8].

If we implement the above procedure straightforwardly,
we have to solve 5M (=

∑M
n=0 MCn22n) linear program-

ming problems at most. However, we can accelerate the
judging procedure by using relaxation problems.

For example, when the result of the problem (10) indi-
cates that there is no possibility of excessive internal forces,
we have to solve none of the problems (13). This is because
the problem (10) is a relaxation problem of (11). Similarly,
we can also use the following relaxation problem of (13)

maximize 1T k

subject to




WCk = 0
JT ACk = 0
T T (I3M − B)Ck = 0
k ≥ 0.

(14)

If 1T k = 0 in (14), we can skip Step 2 and 3 for the
specified B.

V. NUMERICAL EXAMPLES

Let us present some numerical examples to explain how
our method works. We implemented the judgment algo-
rithm described in Section IV-B on Scilab. The computation
times for the examples below are measured on a Linux PC
with Celeron at 2.4 GHz.

For simplicity, we describe planar cases in detail, while
very brief results are shown for spatial cases. For planar
cases, we can use almost the same formulation as that in
Section III and IV as follows:

p1, . . . ,pM ∈ �2

f i = Ciki ∈ �2 (ki ≥ 0)

Ci := [ci1 ci2] ∈ �2×2; ci1, ci2 ∈ �2

ki := [ki1, ki2]T ∈ �2

f :=
[
fT

1 , . . . ,fT
M

]T ∈ �2M

k :=
[
kT

1 , . . . ,kT
M

]T ∈ �2M

W :=
[

I2 . . . I2

p1 × I2 . . . pM × I2

]
∈ �3×2M

object friction cone

environment p
1

p
2

p
3

p
4

(a) contact model
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2

p
3

(b) unlikely internal force

Fig. 3. Example: Object in Contact with a Corner (Planar Case)

Fig. 4. Object in Contact with a Corner (Spatial Case)

C := diag(C1, . . . ,CM ) ∈ �2M×2M

T := diag(t1, . . . , tM ) ∈ �2M×M

J := diag(J1, . . . ,JM ) ∈ �2M×L

A := diag(a1I2, . . . , aMI2) ∈ �2M×2M

B := diag(b1I2, . . . , bMI2) ∈ �2M×2M

S := diag(s11, . . . , sM1) ∈ �M×M ,

where pi × I2 ∈ �1×2 is a matrix defined such that (pi ×
I2)x ≡ pi ×x; ti ∈ �2 is a unit tangent vector at the i-th
contact.

A. An Object on a Corner

Consider a rectangular object on a right-angle corner
as shown in Fig. 3. In this case, there are no robots and
therefore we can ignore J and θ.

The static friction coefficient between the object and
the environment (corner) is 1.0. We model the contact
as four point contacts as depicted in Fig. 3(a). We set a
reference frame whose origin coincides with the centroid
of the object, then we have

p1 =
[

2
−1

]
, p2 = p3 =

[−2
−1

]
, p4 =

[−2
0

]
;

t1 = t2 =
[
1
0

]
, t3 = t4 =

[
0
−1

]
;

c11 = c21 =
1√
2

[
1
1

]
, c12 = c22 =

1√
2

[−1
1

]
,

c31 = c41 =
1√
2

[
1
−1

]
, c32 = c42 =

1√
2

[
1
1

]
.
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Thus, we can calculate the following matrices:

W =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 2 1 −2 1 −2 0 −2




C =
1√
2




1 −1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 −1 1




T =




1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 −1




.

In this case, the result of the problem (10) is 1T k →
∞ and therefore our previous method [8] says that there
is a possibility of excessive internal forces. The excessive
internal forces correspond to the contact forces within the
friction cones at p2 and p3 (as illustrated in Fig. 3(b)).
It is, however, unlikely that such internal forces will be
generated.

On the other hand, in our new method, we enumerate
the combinations of B and S that satisfy (8) and (12) as
follows:

B = diag(1, 1, 1, 1, 0, 0, 0, 0), S = ± diag(1, 1, 0, 0);
B = diag(1, 1, 0, 0, 0, 0, 1, 1), S = ± diag(1, 0, 0, 1);
B = diag(0, 0, 0, 0, 1, 1, 1, 1), S = ± diag(0, 0, 1, 1);
B = diag(1, 1, 0, 0, 0, 0, 0, 0), S = ± diag(1, 0, 0, 0);
B = diag(0, 0, 1, 1, 0, 0, 0, 0), S = ± diag(0, 1, 0, 0);
B = diag(0, 0, 0, 0, 1, 1, 0, 0), S = ± diag(0, 0, 1, 0);
B = diag(0, 0, 0, 0, 0, 0, 1, 1), S = ± diag(0, 0, 0, 1);
B = diag(0, 0, 0, 0, 0, 0, 0, 0), S = diag(0, 0, 0, 0).

For any of the above combinations, the result of problem
(13) is 1T k = 0 and therefore there is no possibility of
excessive internal forces. This shows that our new method
can judge the possibility of excessive internal forces more
accurately than our previous one.

We also tested a spatial case as shown in Fig. 4, which
is almost equivalent to the planar case of Fig. 3(a). It takes
600 CPU seconds for our program to say that there is no
possibility of excessive internal forces.

B. Pinched Objects

Consider pinched rectangular objects as shown in Fig. 5.
In the case of Fig. 5(a), the object has two contacts with
the environment; in the case of Fig. 5(b), the object has
one contact with the environment and another contact with

environment
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(a) pinched by environment

environment

position-

controlled 

robot

object

p
2

p
1

(b) pinched by environment and robot

Fig. 5. Example: Pinched Objects (Planar Cases)

a robot. The robot is position-controlled and therefore
A = diag{0, 0, 0, 0}. The static friction coefficient at the
contacts is 1.0 in both cases.

We set a reference frame whose origin coincides with
the centroid of the object, then we have

p1 =
[−1
−2

]
, p2 =

[
1
2

]
;

t1 =
[
1
0

]
, t2 =

[−1
0

]
;

c11 =
1√
2

[
1
1

]
, c12 =

1√
2

[−1
1

]
,

c21 =
1√
2

[−1
−1

]
, c22 =

1√
2

[
1
−1

]
.

Thus, we can calculate the following matrices:

W =


1 0 1 0

0 1 0 1
2 −1 −2 1




C =
1√
2



1 −1 0 0
1 1 0 0
0 0 −1 1
0 0 −1 −1




T =



1 0
0 0
0 −1
0 0


 .

We can ignore J and θ in the case of Fig. 5(a). In the case
of Fig. 5(b), let the position of the endpoint of the robot
be [

x
y

]
=

[
cos θ1 + cos(θ1 + θ2) + 2
sin θ1 + sin(θ1 + θ2) + 2

]
,

where θ1 and θ2 are the joint angles of the robot and θ1 =
π, θ2 = π/2. Then we obtain

J =




0 0
0 0

− sin(θ1) − sin(θ1 + θ2) − sin(θ1 + θ2)
cos(θ1) + cos(θ1 + θ2) cos(θ1 + θ2)




=




0 0
0 0
1 1
−1 0


 .

1957



(a) incompatible virtual sliding (b) compatible virtual sliding

Fig. 6. Compatible/Incompatible Virtual Sliding

Our previous method [8] cannot distinguish the cases
of Fig. 5(a) and (b), and the result of the problem (10)
is 1T k → ∞. That is, the method says that there is a
possibility of excessive internal forces for both cases.

On the other hand, in our new method, we enumerate
the combinations of B and S that satisfy (8) and (12) for
the case of Fig. 5(a) as follows:

B = diag(1, 1, 1, 1), S = ± diag(1,−1);
B = diag(1, 1, 0, 0), S = ± diag(1, 0);
B = diag(0, 0, 1, 1), S = ± diag(0, 1);
B = diag(0, 0, 0, 0), S = diag(0, 0).

For any of the above combinations, the result of the prob-
lem (13) is 1T k = 0 and therefore there is no possibility of
excessive internal forces in the case of Fig. 5(a); recall that
we deal with ideal rigid bodies and therefore no wedging
forces occur in this case.

In the case of Fig. 5(b), the following combinations
satisfy (8) and (12):

B = diag(1, 1, 1, 1), S = ± diag(1, 1);
B = diag(1, 1, 1, 1), S = ± diag(1,−1);
B = diag(1, 1, 0, 0), S = ± diag(1, 0);
B = diag(0, 0, 1, 1), S = ± diag(0, 1);
B = diag(0, 0, 0, 0), S = diag(0, 0).

Because of the degrees of freedom of the robot, additional
combinations, B = diag(1, 1, 1, 1) and S = ± diag(1, 1),
are allowed. That corresponds to the fact that a virtual
sliding depicted in Fig. 6 is incompatible with rigid-body
motion in the case of Fig. 5(a) while it is compatible in
the case of Fig. 5(b). The result of the problem (13) in the
case of Fig. 5(b) is 1T k → ∞ when B = diag(1, 1, 1, 1)
and S = − diag(1, 1), and therefore there is a possibility
of excessive internal forces as illustrated in Fig. 5(b).

We also tested spatial cases as shown in Fig. 7, which
are almost equivalent to the planar cases of Fig. 5. It takes
0.08 CPU seconds and 0.1 CPU seconds for Fig. 7(a) and
Fig. 7(b), respectively, to judge the possibility of excessive
internal forces.

VI. CONCLUSION

We presented a method to judge the possibility of
excessive internal forces in robotic contact tasks by solving

(a) pinched by environment (b) pinched by environment and robot

Fig. 7. Example: Pinched Objects (Spatial Cases)

a series of linear programming problems. The method is
an extended version of our previous one [8] and based
on rigid-body statics. Numerical examples showed that the
new method can judge the possibility of excessive internal
forces more accurately than the old one. The improved
accuracy results from the consideration of constraints on
static frictional forces derived by Omata and Nagata [9]
[10].

Developing more efficient judging procedure should be
addressed in future work. This is very important for the
application to manipulation planning [3] [13].
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