
2D Caging Manipulation by Robots and Walls

Ryo YOKOI
Maeda Lab, Dept. of Mechanical Engineering,

Div. of Systems Integration,
Graduate School of Engineering,
Yokohama National University

79-5 Tokiwadai, Hodogaya-ku, Yokohama,
240-8501 Japan

Email: yokoi@iir.me.ynu.ac.jp

Tatsuya KOBAYASHI
Komatsu Ltd.

Yusuke MAEDA
Dept. of System Design, Div. of Systems Research,

Faculty of Engineering,
Yokohama National University

Email: maeda@ynu.ac.jp

Abstract—In this paper, we propose a new robotic manipu-
lation: caging manipulation by robots and walls. Caging is a
method to make an object inescapable from a closed region
by rigid bodies. Previous studies use only robots for caging,
while we use walls as well. First, we formulate 2D caging with
the environment such as walls. Secondly, we derive the caging
manipulability condition. The manipulability problem is trivial
in robot-only caging, but crucial in our cases. Finally, we present
a method to plan 2D caging manipulation of a circular object by
circular robots and straight walls.

I. I NTRODUCTION

In conventional robotic manipulation, form- or force-closure
grasping is used to constrain movements of objects. Caging
(or capturing) is another method to constrain objects for
manipulation [1]; in caging, an object is inescapable from
a closed region without penetrating robot bodies. The state
where caging is achieved is termedobject closure[2][3].

Caging has several advantages over grasping. Mechanical
analysis is not necessary because the object is constrained
geometrically. That is to say, position-controlled robots can
be used for manipulation. Moreover, we can tolerate positional
control errors of robots to some extent by considering a margin
for caging. Robots with few degrees of freedom can be used
for caging.

Rimon and Blake proposed a 2D caging method to con-
strain concave objects by using two-fingered hands with disc-
shaped fingertips [1]. Wang and Kumar proposed a 2D caging
algorithm by multiple mobile robots [2]. Pereira et al. also
dealt with 2D caging by multiple mobile robots [3]. Some
caging algorithms were also proposed for 2D caging by disc-
shaped fingertips [4][5],nD caging by point fingertips [6] and
3D caging by link mechanisms [7]. These studies basically
discussed robot-only caging.

On the other hand, we can consider caging with the environ-
ments; that is, caging by not only robots but also walls. Using
the environment brings us some advantages. First, the number
of robots required for caging can be fewer than robot-only
caging (Fig.1). Secondly, it may be possible to cage objects in
the narrow environment where robot-only caging is infeasible.

However, caging with the environment has a difficulty in
the manipulability. In robot-only caging, once an object is
caged, robots can manipulate it simply by translation keeping

their relative positions. Thus the manipulability problem is
trivial. However, it is not the case for caging by robots and
walls; translation may not be enough to manipulate objects
(Fig.2), and robot formation may has to be changed during
manipulation (Fig.3). Hence we have to judge whether caging
manipulation by robots and walls is possible or not.

In this paper, we discuss 2D caging manipulation by robots

Robot

Environment
Object

Fig. 1. Robot-only Caging and Caging by Robots and Walls

?

(a)

?

(b)

?

(c)

?

(d)

Fig. 2. Some Situations Where Manipulation Is Impossible by Translation

(a) (b)

Fig. 3. Some Situations Where Changing Formation Is Required for
Manipulation

and walls. First, we formally define caging with the environ-
ment. Then we formulate caging manipulability. Finally, we
propose a method to plan robot motions for caging manipula-
tion with the environment. The method is based on the result
of caging manipulability analysis. Some planning results are
also shown.

II. FORMULATION OF CAGING WITH ENVIRONMENT

Let us formulate caging by robots and walls. We assume
that the robots, the object and the environment such as walls
are all rigid.

We use the following symbols:

• n: number of robots.
• C: configuration space of the object.
• Aobj: region occupied by the object in the real space.
• Ai: region occupied by theith robot in the real space

(i = 1, . . . , n).
• E : region occupied by the environment in the real space.
• qobj: configuration of the object.
• qi: configuration of theith robot (i = 1, . . . , n).
• qrob = [qT

1 , . . . , qT
n]T .

Now we define object closure for caging with the environ-
ment. This is a straightforward extension of object closure for
robot-only caging presented in [2].

First, we define the configuration obstacle ofith robot or
C-Closure Object,Ccls i, as follows:

Ccls i = {qobj ∈ C|Aobj(qobj) ∩ Ai(qi) ̸= ∅}. (1)

Similarly, the configuration obstacle of the environment,
Ccls env, is defined as follows:

Ccls env = {qobj ∈ C|Aobj(qobj) ∩ E ̸= ∅}. (2)

The total configuration obstacle region or C-Closure Object
Region, Ccls, is given by the union of the configuration
obstacles as follows:

Ccls =
n∪

i=1

Ccls i ∪ Ccls env. (3)

The free space of the obstacle,Cfree, where the object is free
from interferences with the robots and the environment, is
written as follows:

Cfree = C \ Ccls =

(
C \

n∪
i=1

Ccls i

)
\ Ccls env. (4)

Let qobj be a free configuration of the object. Then we
define a subset ofCfree, Cfree obj, as follows:

Cfree obj = {q ∈ Cfree|connected(q, qobj)}. (5)

Cfree obj is the maximal connected subset ofCfree that contains
qobj.

Similarly, letqinf be a point at infinity inC. Then we define
another subset ofCfree, Cfree inf , as follows:

Cfree inf = {q ∈ Cfree|connected(q, qinf)}. (6)

Discontinuous Shrinkage

Fig. 4. Discontinuous Shrinkage ofCfree obj

The object is in object closure if and only if there is no
feasible path fromqobj to qinf . Thus the following conditions
must be satisfied in object closure for caging with the envi-
ronment: {

Cfree obj ̸= ∅
Cfree obj ∩ Cfree inf = ∅.

(7)

III. C AGING MANIPULABILITY

In conventional robot-only caging, once object closure is
achieved, the robots can manipulate the object simply by
translation keeping their relative positions. Thus the problem
of the caging manipulability is trivial. On the other hand, in
caging with the environment, the manipulability is not trivial
as mentioned in Section I. How can we test the manipulability
in caging by robots and walls?

We focus attention on the change ofCfree obj between
time t and timet + ∆t. Cfree obj may shrink discontinuously
even if the robots move continuously (Fig.4). In caging,
the configuration of the object can be arbitrary inCfree obj.
Accordingly, discontinuous shrinkage ofCfree obj may mean
discontinuous movement of the object, which is physically
infeasible. Thus such discontinuous shrinkage is not allowed
in caging manipulation. Note that discontinuous expansion of
Cfree obj is allowed.

Therefore the following condition must be satisfied for
caging manipulation:

lim
∆t→+0

(Cfree obj(t) ∩ Cfree obj(t + ∆t)) = Cfree obj(t). (8)

This is the caging manipulability condition and must be
satisfied in addition to the object closure condition (7). Note
that this condition is satisfied implicitly in robot-only caging
by continuous translation of robots.
Cfree obj may split into two or more subsets between time

t and timet + ∆t. In such cases, we cannot determine which
subset contains the object. However, caging manipulation may
be possible because the subsets may join together later. Thus
the caging manipulability condition in such special cases can
be written as follows:

lim
∆t→+0

(
Cfree obj(t) ∩

(∪
i

Cfree obj i(t + ∆t)

))
= Cfree obj(t), (9)

whereCfree obj i is theith split subset. For simplicity, however,
we do not consider such splitting cases from this point.

Here we used the term “manipulability”; however, even if
(8) is satisfied, the robot motion may not be able to move the
object at the instant. (For example, note that the robots can
push the object but cannot pull it.) Such a robot motion does
not move the object at the instant but may be necessary in the
total caging manipulation (e.g. formation change).

IV. PLANNING OF CAGING MANIPULATION

BY ROBOTS AND WALLS

A. Overview of Planning

The planning problem for caging manipulation is to find
a motion of the robots that transfers the object to a goal
area. Here we present a motion planning algorithm for caging
manipulation using the environment such as walls. This al-
gorithm uses the object closure condition (7) and the caging
manipulability condition (8) for planning.

The following assumptions are made for simplicity:

• The object has a circular shape whose radius isRobj.
• All the robots have a congruent circular shape whose

radius isRrob.
• All robots are holonomic.
• The ith robot is atqini i in the initial state.qrob ini =

[qT
ini 1, . . . , q

T
ini n]T .

• The object is atqobj ini and in object closure in the initial
state.

• The total system is a discrete time system with a time
interval ∆t.

We do not consider the orientation of the object and the
robots because they are circular. The discrete-time assumption
is required for object closure test and caging manipulability
test, which are described later.

Since the object configuration cannot be determined
uniquely in caging, the robots cannot transfer the object to
a unique configuration. Accordingly, the goal condition for
planning of caging manipulation must be different from that
for conventional manipulation planning.

Let qgoal be the representative goal configuration of the
object. qgoal ∈ Cfree obj is usually not enough for the goal
condition, becauseCfree obj may be very large and the object
may be far fromqgoal even if qgoal ∈ Cfree obj. Thus we
define the goal condition as follows so that the object will be
transferred close toqgoal:

||qobj − qgoal|| ≤ Rgoal for ∀qobj ∈ Cfree obj. (10)

In other words, the circle of radiusRgoal centered onqgoal

containsCfree obj (Fig.5).

B. Object Closure Test

We must test whether the object is in object closure or not
based on (7) in planning.

We adopt a grid-based approximate representation for the
configuration space of the object, because its exact represen-
tation can be very complex. We use the center of the object

Goal

Roboti

Fig. 5. Goal Condition

Environment

4
3

21

Roboti

Fig. 6. Labeling Process

RobotEnvironment
(a)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x

y

(b)

Fig. 7. Example ofCfree inf

as its representative point, and possible locations of the center
can be represented by 2D grid points.

Grid points where the object interferes with the robots or
the environment are inCcls. Thus by removing such grid points
we can obtain an approximate representation ofCfree.

Since Cfree may be split into some disconnected regions,
we need to identifyCfree obj, in which the object exists. We
cannot determine the configuration of the object uniquely in
caging, thus a little bit complicated procedure is required.

First, we perform connected component labeling to find
connected regions inCfree (Fig.6).Cfree obj(0) is the connected
region that includesqobj ini. Cfree obj(t + ∆t) (t ≥ 0) is
the connected region that has the maximum intersection with
Cfree obj(t). There may be two or more regions that have the
maximum intersection; however, such situations can be safely
omitted because the caging manipulability condition (8) is not
satisfied.

Then we defineCfree inf as the set of grid points at the
border, instead of a point at infinity. In the case of Fig.7(a),
for example,Cfree inf is composed of grid points at the top
left and the top right as shown in Fig.7(b). IfCfree obj is not
empty and does not intersect withCfree inf , we judge that (7)
is satisfied and the object is in object closure. Otherwise, the
object is not caged.

C. Caging Manipulability Test

We must also test whether a robot motion is a valid caging
manipulation or not based on (8) in planning.

Due to our discrete space-time representation, (8) can be

approximated by the following inequality:

n(Cfree obj(t) \ Cfree obj(t + ∆t))
n(Cfree obj(t))

< a, (11)

wheren(C) is the number of grid points included in the region
C; a is a threshold for the continuity ofCfree obj and a < 1.
If (11) is satisfied, the shrinkage ofCfree obj is very small, if
any.

However, (11) is too harsh in some cases; ifa ×
n(Cfree obj(t)) < 1, the number of grid pointsn(Cfree obj(t) \
Cfree obj(t + ∆t)) must be zero. Therefore, we allow the
shrinkage ofCfree obj up to one grid point. This condition
is written as follows:

n(Cfree obj(t) \ Cfree obj(t + ∆t)) ≤ 1. (12)

If (11) or (12) is satisfied, we regard the corresponding robot
motion as valid caging manipulation.

D. Motion Planning of Robots

We adopt RRT (Rapidly-exploring Random Trees) [9] for
motion planning. The procedure of motion planning of the
robots based on RRT is as follows:

1) Add qrob ini to the RRT.
2) Sample a configuration of the robots:qsample, and find

its nearest neighbor in the RRT:qnearest.
3) Consider a branch of length∆l from qnearest to qnew

in the direction ofqsample.
4) If there are collisions among the robots and the environ-

ment atqnew, discardqnew and go back to step 2).
5) If qnew does not pass the object closure test, discard

qnew and go back to step 2).
6) If qnew does not pass the caging manipulability test,

discardqnew and go back to step 2).
7) Add the branch fromqnearest to qnew to the RRT.
8) Repeat steps from 2) to 7) untilqnew satisfies the goal

condition (10).

If the goal condition is satisfied, a path from the initial config-
uration to the final configuration in the RRT can be obtained.
The path is the planned robot motion for caging manipulation
with the environment. In step 3),qnew is calculated as follows:

qnew = qnearest + ∆l
qsample − qnearest

||qsample − qnearest||
. (13)

The above procedure spends much time for planning if
qsample is sampled completely at random. Therefore, we add
some heuristics to bias the sampling to accelerate planning.
In step 2) of the above procedure, we determineqsample and
qnearest by the following strategies:

a) Random Motion for Each Robot:We just determine
qsample at random and find its nearest neighbor in the RRT:
qnearest.

TABLE I
PARAMETERS IN PLANNING

Planning Region 600×600 Grid Interval 1
Rrob 10 a 0.01
Robj 40 Pa 0.8
Rgoal 100 Pb 0.1
∆l 0.1 Pc 0.1

b) Random Translation:We consider translation of the
robots by the following procedure:

1) Sample a random object configuration:qsample obj.
2) Find its nearest neighbor in the RRT:qnearest. Here

we use the following distance function between a robot
configuration and an object configuration:

d(qrob, qobj) =

√√√√ n∑
i=1

||qi − qobj||2. (14)

3) Calculate the centroid of the robots that contribute to ob-
ject closure:qnearest cent and a vector:v = qsample obj−
qnearest cent.

4) Determineqsample so that qsample i = qnearest i + v
for the robots that contribute to object closure.qsample i

for the robots that do not contribute to object closure is
determined at random.

As a result, the robots that contribute to object closure are
translated in a random direction. The robots that do not
contribute to object closure are moved in a random direction.

c) Translation to Goal: We consider translation of the
robots to the goal by the following procedure:

1) Sampleqgoal as an object configuration.
2) Find its nearest neighbor in the RRT:qnearest. Here we

use (14) as the distance function.
3) Calculate the centroid of the robots that contribute to

object closure:qnearest cent and a vector:v = qgoal −
qnearest cent.

4) Determineqsample so that qsample i = qnearest i + v
for the robots that contribute to object closure.qsample i

for the robots that do not contribute to object closure is
determined at random.

As a result, the robots that contribute to object closure are
translated in the goal direction. The robots that do not con-
tribute to object closure are moved in a random direction.

We select the above strategies with a probability ofPa, Pb

and Pc, respectively (Pa + Pb + Pc = 1). These heuristics
will increase the probability of searching toward the goal and
reduce the planning time.

E. Results of Motion Planning

We implemented the above procedure based on MSL (Mo-
tion Strategy Library) [8]. The implemented planner was tested
on a Linux PC with Core2Quad Q9450 CPU at 2.66 (GHz).
The parameters used in motion planning are listed in TABLE I.

Even if our planner successfully finds a robot motion for
caging manipulation with the environment, the object configu-
ration during manipulation cannot be determined by definition
of caging; that is, we cannot visualize the object motion in
planned manipulation uniquely.

However, it is inconvenient that visual verification of
planned manipulation is impossible, thus we simulate planned
results on a dynamics simulator, ODE (Open Dynamics En-
gine) [10]. Such simulation does not prove the correctness
of the planner but provides useful information on its validity.
The robots in the simulator are in PID control to follow the
planned paths. We assume that the robots have almost infinite
mass so that their motion is not affected by the object. (Note
that caging manipulation is completely based on geometry.)

1) Caging Manipulation by Three Robots along a Wall:
We show a planning result of caging manipulation by three
robots. The robots are initially at the lower left in Fig.8 and the
goal is at the lower right. Fig.9 shows constructed RRT of the
three robots and Fig.10 shows dynamic simulation of planned
caging manipulation on ODE. Our planner successfully found
a robot motion for caging manipulation along a wall, while
the planned motion is not well-optimized. The computation
time for planning was 604 CPU seconds.

2) Caging Manipulation by Two Robots in a Corridor:We
show a planning result of caging manipulation by two robots.
The robots are initially at the left of a corridor as shown in
Fig.11 and the goal is at the right. The corridor is narrow
and therefore only two robots can cage the object. Fig.12
shows constructed RRT of the right robot and Fig.13 shows
dynamic simulation of planned caging manipulation on ODE.
Our planner successfully found a robot motion for caging
manipulation by sandwiching the object. The computation time
for planning was 465 CPU seconds.

3) Caging Manipulation by Two Robots in an L-shaped
Corridor: We show another planning result of caging ma-
nipulation by two robots. The robots are initially at the lower
left of an L-shaped corridor as shown in Fig.14 and the goal
is at the upper right. Fig.15 shows constructed RRT of the
robot initially at right, and Fig.16 shows dynamic simulation
of planned caging manipulation on ODE. Our planner success-
fully found a robot motion for caging manipulation, while the
planned motion is not well-optimized. The computation time
for planning was 4606 CPU seconds.

V. CONCLUSION

In this study, we presented caging manipulation with the
environment such as walls. Such manipulation has several
advantages over conventional robot-only caging. We formally
defined caging with the environment and derived a condition
for the caging manipulability. We also presented an RRT-based
planner for caging manipulation with the environment. The
planner worked successfully in several cases.

Our planner is still under development and can stand further
improvement in many aspects. The computation efficiency
is one of the most important issue. The shape limitation of
objects and robots should be relaxed. Planned paths of robots

Robot Goal Position

Fig. 8. Initial State of Caging Ma-
nipulation

Fig. 9. RRT of Three Robots

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Planned Caging Manipulation along a Wall

should be smoothed to omit unnecessary motions. We will also
address a design of part feeder based on the idea of caging
manipulation with the environment.

Robot Goal Position

Fig. 11. Initial State of Caging
Manipulation

Fig. 12. RRT of The Right Robot

(a) (b)

(c) (d)

Fig. 13. Planned Caging Manipulation in a Corridor

REFERENCES

[1] E. Rimon and A. Blake: “Caging Planar Bodies by One-Parameter Two-
Fingered Gripping Systems,” Int. J. of Robotics Research, Vol. 18, No. 3,
pp. 299–318, 1999.

[2] Z. Wang and V. Kumar: “Object Closure and Manipulation by Multiple
Cooperating Mobile Robots,” in Proc. of IEEE Int. Conf. on Robotics
and Automation, pp. 394–399, 2002.

[3] G. A. S. Pereira, M. F. M. Campos and V. Kumar: “Decentralized Al-
gorithms for Multi-Robot Manipulation via Caging,” Int. J. of Robotics
Research, Vol. 23, No. 7–8, pp. 783–795, 2004.

[4] J. Erickson, S. Thite, F. Rothganger and J. Ponce: “Capturing a Convex
Object With Three Discs,” IEEE Trans. on Robotics, Vol. 23, No. 6,
pp.1133–1140, 2007.

[5] M. Vahedi and A. F. van der Stappen: “Caging Polygons with Two
and Three Fingers,” Int. J. of Robotics Research, Vol. 27, No. 11–12,
pp. 1308–1324, 2008.

[6] P. Pipattanasomporn, P. Vongmasa and A. Sudsang: “Caging Rigid
Polytopes via Finger Dispersion Control,” in Proc. of IEEE Int. Conf.
on Robotics and Automation, pp. 1181–1186, 2008.

[7] S. Makita and Y. Maeda: “3D Multifingered Caging: Basic Formulation
and Planning,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 2697–2702, 2008.

Robot

Goal Position

Fig. 14. Initial State of Caging
Manipulation

Fig. 15. RRT of The Right Robot

(a) (b)

(c) (d)

(e) (f)

Fig. 16. Planned Caging Manipulation in an L-shaped Corridor

[8] “Motion Strategy Library,” http://msl.cs.uiuc.edu/msl/.
[9] S. M. LaValle and J. J. Kuffner: “Rapidly-exploring Random Trees:

Progress and Prospects,” B. R. Donald, K. M. Lynch and D. Rus eds.,
Algorithmic and Computational Robotics: New Directions, A. K. Peters,
pp. 293–308, 2001.

[10] “Open Dynamics Engine,” http://www.ode.org/.

