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Abstract—In this paper, we propose a new robotic manipu- their relative positions. Thus the manipulability problem is
lation: caging manipulation by robots and walls. Caging is a trivial. However, it is not the case for caging by robots and
method to make an object inescapable from a closed region walls; translation may not be enough to manipulate objects

by rigid bodies. Previous studies use only robots for caging, ,. . .
while we use walls as well. First, we formulate 2D caging with (Fig.2), and robot formation may has to be changed during

the environment such as walls. Secondly, we derive the cagingManipulation (Fig.3). Hence we have to judge whether caging
manipulability condition. The manipulability problem is trivial ~ manipulation by robots and walls is possible or not.
in robot-only caging, but crucial in our cases. Finally, we present |n this paper, we discuss 2D caging manipulation by robots
a method to plan 2D caging manipulation of a circular object by
circular robots and straight walls.

Robot

r'd
|. INTRODUCTION ® o
In conventional robotic manipulation, form- or force-closure @ o [ o
grasping is used to constrain movements of objects. Caging ® ovic
(or capturing) is another method to constrain objects for Environment

manipulation [1]; in caging, an object is inescapable from

a closed region without penetrating robot bodies. The state Fig- 1. Robot-only Caging and Caging by Robots and Walls

where caging is achieved is termetject closurg?2][3].
Caging has several advantages over grasping. Mechani ® o e

analysis is not necessary because the object is constrai@ o ® > @ Fo

geometrically. That is to say, position-controlled robots cg Lo

be used for manipulation. Moreover, we can tolerate positior? ..:

control errors of robots to some extent by considering a marc

for caging. Robots with few degrees of freedom can be used @) (b)

for caging. ®
Rimon and Blake proposed a 2D caging method to co

strain concave objects by using two-fingered hands with dis ® o

shaped fingertips [1]. Wang and Kumar proposed a 2D cagi o ‘

algorithm by multiple mobile robots [2]. Pereira et al. alst 3’ """ :

dealt with 2D caging by multiple mobile robots [3]. Some. 7777777

caging algorithms were also proposed for 2D caging by dls_ —

shaped fingertips [4][5}»D caging by point fingertips [6] and ©

3D caging by link mechanisms [7]. These studies basical

discussed robot-only caging.

On the other hand, we can consider caging with the environ-
ments; that is, caging by not only robots but also walls. Usir I o o o

I
lyg 2. Some Situations Where Manipulation Is Impossible by Translation

the environment brings us some advantages. First, the num ° P P — o o
of robots required for caging can be fewer than robot-ong ® =) ® ® Py
caging (Fig.1). Secondly, it may be possible to cage objects ﬁ r
the narrow environment where robot-only caging is infeasibl_

However, caging with the environment has a difficulty in (@) (b)

the manipulability. In robot-only caging, once an object igig. 3.  Some Situations Where Changing Formation Is Required for
caged, robots can manipulate it simply by translation keepihtgnipulation



and walls. First, we formally define caging with the environ- Cfree obj Discontinuous Shrinkage
ment. Then we formulate caging manipulability. Finally, we J —

propose a method to plan robot motions for caging manipula- .
tion with the environment. The method is based on the result .
of caging manipulability analysis. Some planning results are :
also shown. ®

Il. FORMULATION OF CAGING WITH ENVIRONMENT

Let us formulate caging by robots and walls. We assume

that the robots, the object and the environment such as walls Time: t Time: t + At
are all rigid.
We use the foIIowing symbols: Fig. 4. Discontinuous Shrinkage Gfrcc_obj
« n: humber of robots.
« C: configuration space of the object. The object is in object closure if and only if there is no

« Aob;: region occupied by the object in the real space. feasible path fromyop; t0 gins. Thus the following conditions
« A;: region occupied by théth robot in the real space must be satisfied in object closure for caging with the envi-

(i=1,...,n). ronment:
« &:region occupied by the environment in the real space. Chree_obj 7 0 .
e gob;: configuration of the object. Cirec_obj N Chrec_inf = 0. @)
e g;: configuration of theth robot ¢ =1,...,n). B -
_ T T I1l. CAGING MANIPULABILITY
® ({rob = [ql 7---7qn] .

Now we define object closure for caging with the environ- In conventional robot-only caging, once object closure is
ment. This is a straightforward extension of object closure f@chieved, the robots can manipulate the object simply by

robot-only caging presented in [2]. translation keeping their relative positions. Thus the problem
First, we define the configuration obstacle it robot or of the caging manipulability is trivial. On the other hand, in
C-Closure Object(. ;, as follows: caging with the environment, the manipulability is not trivial

as mentioned in Section I. How can we test the manipulability
Cais_i = {qobj € C|Aobj(qobj) N Ai(qi) # 0} (1) in caging by robots and walls?

We focus attention on the change Of.c. on; between
ime ¢ and timet + At. Cqec_on; May shrink discontinuously
even if the robots move continuously (Fig.4). In caging,

Cets env = {Gobj € ClAobj(gon;) NE # 0} @) the cor_1figurati_on of_the object_ can be arbitrarydRee_ob-

- Accordingly, discontinuous shrinkage Of.cc on; May mean
The total configuration obstacle region or C-Closure Objediscontinuous movement of the object, which is physically
Region, C.s, is given by the union of the configurationinfeasible. Thus such discontinuous shrinkage is not allowed

Similarly, the configuration obstacle of the environmen[
Cels_env, IS defined as follows:

obstacles as follows: in caging manipulation. Note that discontinuous expansion of
n Ciree_obj IS allowed.
Cels = UCdS_iUCdS_enV. 3) Therefore the following condition must be satisfied for
i=1 caging manipulation:

The free space of thg obstac®,.., where the objgct is free 1lim (Chree_obj(t) N Crree_obj(t + At)) = Crreo_obj(t).  (8)
from interferences with the robots and the environment, is®t—+0
written as follows: This is the caging manipulability condition and must be
n satisfied in addition to the object closure condition (7). Note
Chree = C \ Cets = (C\ U Ccls_i) \ Cels_env- (4) that this condition is satisfied implicitly in robot-only caging
by continuous translation of robots.
Ciree_obj May split into two or more subsets between time
and timet + At. In such cases, we cannot determine which
subset contains the object. However, caging manipulation may
Ciree_obj = {q € Civee|connected(q, gob;)}- (5) be possible because the subsets may join together later. Thus
the caging manipulability condition in such special cases can
Ciree_obj IS the maximal connected subset(gf,. that contains pe written as follows:

qobj-
Similarly, let gi,s be a point at infinity inC. Then we define lim (Cf ()N (U Chroo_obi i (t + At)))
ree_ob] ree_obj_t

i=1

Let gon; be a free configuration of the object. Then we
define a subset &ft.ce, Ceree_obj, as follows:

another subset afsce, Ciree_int, as follows: At—+0

Ctroo_inf = {q € Ciree|connected(q, ginf) }- (6) = Crec_obj(t), (9)



whereCeee_obj_; IS theith split subset. For simplicity, however, Ctree ROt\)Oti Ceis_i

we do not consider such splitting cases from this point. Robot c _ (i zmEmcanw 7@::
Here we used the term “manipulability”; however, even i~o2°4 free_obj e # =
(8) is satisfied, the robot motion may not be able to move tl Ryoal (o EE_ER)I=

goa | £

object at the instant. (For example, note that the robots ¢
push the object but cannot pull it.) Such a robot motion do
not move the object at the instant but may be necessary in EEEEEEE
total caging manipulation (e.g. formation change).

Ccis_env Environment Cﬂreeiob_j
IV. PLANNING OF CAGING MANIPULATION

BY ROBOTS AND WALLS Fig. 5. Goal Condition Fig. 6. Labeling Process

A. Overview of Planning

C .
The planning problem for caging manipulation is to find ; free,lhf

a motion of the robots that transfers the object to a goal
area. Here we present a motion planning algorithm for caging
manipulation using the environment such as walls. This al-
gorithm uses the object closure condition (7) and the caging

manipulability condition (8) for planning. Lo
The following assumptions are made for simplicity: . . "
« The object has a circular shape whose radiugJs;. 7 [ = /@ m\ w

« All the robots have a congruent circular shape whose Environment Robot CCIS Cfree_obj Cfree
I’adIUS iSRrOb' (a) (b)
« All robots are holonomic.

« The ith robot is atg;,;_; in the initial state.qeop_ini = Fig. 7. Example 0Ctrcc_inf

[qgli_b-_“a‘_ﬂi_n]T ) . ) o
» The object is atyop;_ini @and in object closure in the initial ) ) _ )

state. as its representative point, and possible locations of the center
« The total system is a discrete time system with a tinféln pe represented by 2D Q”d points. .

interval At. Grid points where the object interferes with the robots or

We do not consider the orientation of the object and tﬂge environment are idds'.Thus by removing_such grid points

robots because they are circular. The discrete-time assump%% f:an obtain an approx!m'ate represeqtatlodfgt. )

is required for object closure test and caging manipulability ©INC€ Ciree May be split into some disconnected regions,

test. which are described later. we need to identifyCr.ce obj, IN Which the object exists. We
Since the object configuration cannot be determin&@"not determine the configuration of the object uniquely in

uniquely in caging, the robots cannot transfer the object £89iNg: thus a little bit complicated procedure is required.

a unique configuration. Accordingly, the goal condition for First, we perform connected component labeling to find

planning of caging manipulation must be different from thatonnected regions ik (Fig.6). Ciree_ob; (0) is the connected

for conventional manipulation planning. region that includesgon; ini. Ciree_obj(t + At) (t > 0) is
Let gy be the representative goal configuration of ththe connected region that has the maximum intersection with

Object. ggoat € Ciree_obj is Usually not enough for the goa|CfreeTobj (t).' There may be two or more regions that have the

condition, becauséfc. o»; May be very large and the 0bjectmammum intersection; however, such situations can be safely

may be far fromg l_even if geoal € Chee obi. ThUs we omitted because the caging manipulability condition (8) is not

goa. goa ree_obj- . .
define the goal condition as follows so that the object will b2tisfied.

transferred close tqqoa: Then we defineCec_ins as the set of grid points at the
¢ border, instead of a point at infinity. In the case of Fig.7(a),
[|@obj — Ggoalll < Rgoal fOr Vgon; € Crree_obj- (10) for example,Cec_ins iS composed of grid points at the top

left and the top right as shown in Fig.7(b).(f.cec_ob; IS NOt
empty and does not intersect Wili._inr, We judge that (7)

is satisfied and the object is in object closure. Otherwise, the
B. Object Closure Test object is not caged.

We must test whether the object is in object closure or n8t
based on (7) in planning. '
We adopt a grid-based approximate representation for the/e must also test whether a robot motion is a valid caging

configuration space of the object, because its exact represaanipulation or not based on (8) in planning.
tation can be very complex. We use the center of the objectDue to our discrete space-time representation, (8) can be

In other words, the circle of radiuBy..; centered ongg.;
ContainSCfree_obj (F|g5)

Caging Manipulability Test



TABLE |

approximated by the following inequality: PARAMETERS 1N PLANNING
1(Cree_obj(t) \ Crree_obj(t + At)) Planning Region] 600x600 |[[ Grid Interval | 1

1 (Chreeong (1)) = D Birob 10 a 0.01

ree_obj Robj 0 7 08

. . . . . . Rgoal 100 Pb 0.1

wheren(C) is the number of grid points included in the region N 01 7 o1

C; a is a threshold for the continuity @.cc on; anda < 1.
If (11) is satisfied, the shrinkage Gk.cc_ob; iS very small, if
any.

However, (11) is too harsh in some cases; df x
1(Crree_obj(t)) < 1, the number of grid point&(Cree_ob;j(t) \ ) _ _
Ciree_obj(t + At)) must be zero. Therefore, we allow the 1) Sample a random object configuratiafmple_ob;-

shrinkage 0fCec onj UP to one grid point. This condition 2) Find its nearest neighbor in the RRcarest- Here
is written as follows: we use the following distance function between a robot

configuration and an object configuration:

b) Random Translation\We consider translation of the
robots by the following procedure:

n(cfree_obj (t) \ Cfree_obj (t + At)) S 1. (12) n

d robs dobj) = i — qobj 2, 14

If (11) or (12) is satisfied, we regard the corresponding robot (¢rob, Goni) ; 19: = o (14)
motion as valid caging manipulation.

3) Calculate the centroid of the robots that contribute to ob-
D. Motion Planning of Robots ject closuregnecarest_cent aNd & VECIOrY = gsample_obj—

QHearest_cent .

We adopt RRT (Rapidly-exploring Random Tregs) [9] for 4) Determine guample SO that Guample i = Gnearest_i + v
motion planning. The procedure of motion planning of the for the robots that contribute to object cloSUgE,mp1e ;

robots based on RRT is as follows: for the robots that do not contribute to object closure is
1) Add g:ob_ini 10 the RRT. determined at random.
2) Sample a configuration of the roboig.mple, and find As a result, the robots that contribute to object closure are
its nearest neighbor in the RR&; carest- translated in a random direction. The robots that do not
3) Consider a branch of lengthl from gucarest 10 gnew  contribute to object closure are moved in a random direction.
in the direction 0fgsample- c) Translation to Goal:We consider translation of the

4) If there are collisions among the robots and the enviropsots to the goal by the following procedure:
ment atq,..,, discardq,., and go back to step 2).

5) If guew dOes not pass the object closure test, discard
gnew and go back to step 2).

6) If g..w does not pass the caging manipulability test,
discardq,., and go back to step 2).

7) Add the branch fromgcarest 10 gnew t0 the RRT.

8) Repeat steps from 2) to 7) unijl., Satisfies the goal nearest_cent-
) Corf)dition (fo) ) ) b{ﬂe g 4) DetermlneQSample SO thatQSample_i = {nearest_i + v

for the robots that contribute to object closugg,mpie_;
If the goal condition is satisfied, a path from the initial config-  for the robots that do not contribute to object closure is
uration to the final configuration in the RRT can be obtained.  determined at random.

The path is the planned robot motion for caging manipulati
with the environment. In step 3§,..w IS calculated as follows:

1) Sampleg,..1 as an object configuration.

2) Find its nearest neighbor in the RR;carest- HEre we
use (14) as the distance function.

3) Calculate the centroid of the robots that contribute to
ObjeCt Closure:QHearest_cent and a vectorv = Ggoal —

%As a result, the robots that contribute to object closure are

translated in the goal direction. The robots that do not con-

tribute to object closure are moved in a random direction.
We select the above strategies with a probabilityPpf P,

and P,, respectively P, + P, + P, = 1). These heuristics
The above procedure spends much time for planning vfill increase the probgbility of searching toward the goal and

@sample IS Sampled completely at random. Therefore, we adgduce the planning time.

some heuristics to bias the sampling to accelerate plannirég. ) )

In step 2) of the above procedure, we determjgg,,.c and E- Results of Motion Planning

Gnearest DY the following strategies: We implemented the above procedure based on MSL (Mo-

a) Random Motion for Each RobowVe just determine tion Strategy Library) [8]. The implemented planner was tested
gsample @t random and find its nearest neighbor in the RRBn a Linux PC with Core2Quad Q9450 CPU at 2.66 (GHz).
Qnearest - The parameters used in motion planning are listed in TABLE I.

Gnew = Grearest + Al Qsample — Qnearest (13)

Hqsample — {Qnearest H '



Even if our planner successfully finds a robot motion fo —
caging manipulation with the environment, the object configL
ration during manipulation cannot be determined by definitio
of caging; that is, we cannot visualize the object motion i
planned manipulation uniquely.

However, it is inconvenient that visual verification of
planned manipulation is impossible, thus we simulate planng
results on a dynamics simulator, ODE (Open Dynamics Eli | o - X e~
gine) [10]. Such simulation does not prove the correctne: T = [\N
of the planner but provides useful information on its validity Robot Goal Position
The robots in the simulator are in PID control to follow the
planned paths. We assume that the robots have almost inflrﬁtgulanon'”'t'a' State of Caging Ma- Fig. 9. RRT of Three Robots
mass so that their motion is not affected by the object. (Note
that caging manipulation is completely based on geometry.

1) Caging Manipulation by Three Robots along a Wall:
We show a planning result of caging manipulation by thre
robots. The robots are initially at the lower left in Fig.8 and th
goal is at the lower right. Fig.9 shows constructed RRT of t
three robots and Fig.10 shows dynamic simulation of plann
caging manipulation on ODE. Our planner successfully fou
a robot motion for caging manipulation along a wall, while
the planned motion is not well-optimized. The computatio
time for planning was 604 CPU seconds.

2) Caging Manipulation by Two Robots in a Corridowe @ (b)
show a planning result of caging manipulation by two robotg
The robots are initially at the left of a corridor as shown i
Fig.11 and the goal is at the right. The corridor is narro
and therefore only two robots can cage the object. Fig.
shows constructed RRT of the right robot and Fig.13 sho
dynamic simulation of planned caging manipulation on ODE
Our planner successfully found a robot motion for cagin
manipulation by sandwiching the object. The computation ti
for planning was 465 CPU seconds.

3) Caging Manipulation by Two Robots in an L-shape
Corridor: We show another planning result of caging ma
nipulation by two robots. The robots are initially at the lower (©
left of an L-shaped corridor as shown in Fig.14 and the gojg
is at the upper right. Fig.15 shows constructed RRT of t
robot initially at right, and Fig.16 shows dynamic simulatio
of planned caging manipulation on ODE. Our planner succes
fully found a robot motion for caging manipulation, while the
planned motion is not well-optimized. The computation tim
for planning was 4606 CPU seconds.

V. CONCLUSION

In this study, we presented caging manipulation with t
environment such as walls. Such manipulation has sevel
advantages over conventional robot-only caging. We formally (e) )
defined caging with the environment and derived a condition
for the caging manipulability. We also presented an RRT-based
planner for caging manipulation with the environment. The
planner worked successfully in several cases.

Our planner is still under development and can stand further
improvement in many aspects. The computation efficiengjpould be smoothed to omit unnecessary motions. We will also
is one of the most important issue. The shape limitation afidress a design of part feeder based on the idea of caging
objects and robots should be relaxed. Planned paths of robm@nipulation with the environment.

Fig. 10. Planned Caging Manipulation along a Wall



Goal PositicIJn

Robot Goal Position

Robot

Fig. 11. Initial State of Caging Fig. 12. RRT of The Right Robot
Manipulation Fig. 14. Initial State of Caging Fig. 15. RRT of The Right Robot

Manipulation

_- (a) (b)
- . 01 ‘

(© (d)

(©

Fig. 13. Planned Caging Manipulation in a Corridor
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