
Motion Planning of Robot Fingertips
for Graspless Manipulation

Yusuke MAEDA
Dept. of Prec. Eng., School of Eng.,

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo

113-8656 JAPAN
maeda@prince.pe.u-tokyo.ac.jp

Tomohisa NAKAMURA
NTT Data Corporation

Tamio ARAI
Dept. of Prec. Eng., School of Eng.,

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo

113-8656 JAPAN
arai@prince.pe.u-tokyo.ac.jp

Abstract— In this paper, we present a method of motion
planning of multiple robot fingertips for graspless (or nonpre-
hensile) manipulation. The method can automatically generate
various graspless operations, including pushing and tumbling.
By considering whether each robot finger should be position- or
force-controlled, we can obtain robust manipulation plans against
external disturbances. Some examples of planned graspless ma-
nipulation of a cuboid by two robot fingers are presented. We also
show an experimental result of execution of planned graspless
manipulation by a robot with a multi-fingered hand.

I. INTRODUCTION

Manipulation without grasping is referred to as graspless
manipulation [1] or nonprehensile manipulation [2]. In this
paper, we study graspless manipulation where the manipulated
object is supported not only by robot fingers but also by the en-
vironment; it includes pushing, sliding and tumbling (Fig. 1).
Graspless manipulation brings the following advantages to
robots:

• Manipulation without supporting all the weight of the
object

• Manipulation with simple mechanisms
• Manipulation when grasping is impossible

Thus graspless manipulation is important as a complement of
conventional pick-and-place to enhance the dexterity of robots.

Planning of robot motions to move an object from an
initial configuration to a goal is a fundamental problem in
robotic manipulation. However, robot motion planning for
graspless manipulation is much more difficult than that for
pick-and-place [3]. In pick-and-place operation, once an object
is grasped, the correspondence of its motion to the robot
motion is trivial; therefore manipulation planning is reduced

sliding
tumbling pivoting

pushing

Fig. 1. Graspless Manipulation

to a geometrical collision avoidance. On the other hand,
the correspondence in graspless manipulation is nontrivial;
thus manipulation planning requires mechanical analysis for
consideration of the effect of gravity, contact forces, and so
on. Moreover, graspless manipulation may be irreversible: For
example, a robot can push an object but may not be able to pull
it back. Therefore, most of related studies deal with planning
of manipulation with a specific operation such as pushing (e.g.,
[4], [5]).

The authors proposed a planning method for general grasp-
less manipulation by multiple robot fingertips [3]. However,
the method can deal with only planar graspless manipulation.
In this paper we extend our previous method. The main
improvements are as follows:

• Now it can deal with spatial graspless manipulation such
as pushing and tumbling of a polyhedron by multiple
robot fingertips.

• Control modes of robot fingers (force control/position
control) are considered explicitly for realistic manipula-
tion.

• A new stability measure [6] is adopted in planning to
generate robuster graspless manipulation.

• A* algorithm [7] is used to accelerate planning.
This paper is organized as follows: Section II introduces

a model of graspless manipulation. Section III describes a
method to determine appropriate finger control modes (force
control or position control) at an instant in graspless manipu-
lation based on [8]. Section IV proposes a method of motion
planning of robot fingertips for graspless manipulation. In
Section V, some examples of planned graspless manipulation
including pushing and tumbling are presented. We also show
an experimental result of execution of planned manipulation
by a robot with a multi-fingered hand. Finally, this paper is
concluded in Section VI.

II. MODEL OF GRASPLESS MANIPULATION

A. Assumptions
In this paper, for graspless manipulation by multiple robot

fingertips, we make the following assumptions:
1) The manipulated object, robot fingertips, and the envi-

ronment are rigid.

environment

ienvp

object

robot finger

)(envipn

irobp

)(robipn

robot finger

Fig. 2. Object in Graspless Manipulation

2) Manipulation is quasi-static.
3) Coulomb friction exists between the object and the

environment (or robot fingertips). The friction coefficient
on a contact surface is uniform.

4) Static and kinetic friction coefficients are equal.
5) All the contacts can be approximated by finite point

contacts [6].
6) Each of friction cones can be approximated by a poly-

hedral convex cone [9].
7) Each robot finger is modeled as a rigid sphere and is

in one-point non-sliding contact with the object; we
consider only fingertips.

8) The normal force of each robot finger has an upper limit.
9) Each robot finger is either in position-control mode or

in force-control mode.
10) Each of robot fingers in position-control mode can apply

arbitrary force passively within its friction cone.
11) Each of robot fingers in force-control mode is in hybrid

position/force control [10]; the finger can apply com-
manded normal force actively and arbitrary tangential
force passively within its friction cone.

12) Sliding and rolling of robot fingers on object surfaces
is not allowed. Regrasping is required to change the
location of fingertips on the object.

The problem to be solved is to determine a sequence of
fingertip positions and finger control modes to move an object
from a given initial configuration to a given goal configuration
by graspless manipulation. A sequence of desired normal
forces is also to be obtained for force-controlled fingers.

B. Mechanical Model

Consider graspless manipulation of an object as in Fig. 2.
We set an object reference frame whose origin coincides with
the center of mass of the object. Let penv 1, . . . , penv m ∈
�3 be positions of contact points between the object and
the environment. Similarly, let prob 1, . . . , prob n ∈ �3 be
positions of contact points between the object and the robot
finger 1, . . . , n. We denote inward unit normal vectors at
contact point p by n(p) ∈ �3.

Let us denote the sets of positions of sliding and non-
sliding contacts by Cslide and Cstat, respectively. We can
identify whether penv i ∈ Cslide or penv i ∈ Cstat when the

object motion is specified. We approximate each friction cone
at contact point p by a polyhedral convex cone with unit
edge vectors, c1(p), . . . , cs(p) ∈ �3. For penv i ∈ Cslide, let
c′(penv i) ∈ �3 be a unit edge vector of the friction cone at
contact point penv i opposite to its sliding direction.

The set of possible contact force f ∈ �3 at penv i can be
written as follows:

{
f

∣∣f ∈ span{c1(penv i), . . . , cs(penv i)}
}

if penv i ∈ Cstat,{
f

∣∣f ∈ span{c′(penv i)}
}

if penv i ∈ Cslide,

(1)

where span{. . . } is a polyhedral convex cone spanned by its
element vectors [9]. On the other hand, the set of possible
finger force f at prob i is:

{
f

∣∣f ∈ span{c1(prob i), . . . , cs(prob i)},
n(prob i)

T f ≤ fmax i

}
if robot finger i is position-controlled,{

f
∣∣f ∈ span{c1(prob i), . . . , cs(prob i)},

n(prob i)T f = fcom i ≤ fmax i

}
if robot finger i is force-controlled,

(2)

where fmax i is the upper limit of the normal component of
the finger force and fcom i is the commanded normal force for
robot finger i.

Then we define the following matrices:

W env :=
[

I3 . . . I3

penv 1 × I3 . . . penv m × I3

]
∈ �6×3m

Cenv := diag(Cenv 1, . . . , Cenv m)

Cenv i :=

[c1(penv i) . . . cs(penv i)] ∈ �3×s

if penv i ∈ Cstat,
[c′(penv i)] ∈ �3×1

if penv i ∈ Cslide.

W rob :=
[

I3 . . . I3

prob 1 × I3 . . . prob n × I3

]
∈ �6×3n

Crob := diag(Crob 1, . . . , Crob n) ∈ �3n×ns

Crob i := [c1(prob i) . . . cs(prob i)] ∈ �3×s

N rob := diag(n(prob 1), . . . , n(prob n)) ∈ �3n×n,

where I3 is the 3× 3 identity matrix, and p× I3 ∈ �3×3 is a
linear transformation equivalent to the cross product with p.

Without external disturbances, the equilibrium equation of
the object can be expressed as:

Qknown + W envCenvkenv + W robCrobkrob = 0, (3)

where kenv(≥ 0) and krob(≥ 0) are coefficient vectors to
represent contact forces; Qknown ∈ �6 is a known external
(generalized) force applied to the object such as gravitational
force. The upper limitation on the magnitude of normal finger
forces can be written as:

NT
robCrobkrob ≤ fmax, (4)

where fmax := [fmax 1, . . . , fmaxn]T ∈ �n.

III. DETERMINATION OF FINGER CONTROL MODES

A. Overview

In planning of general graspless manipulation, we should
consider control modes of robot fingers because appropriate
use of both position control and force control according to
situation is required to achieve robust manipulation. Thus we
incorporate a method of determination of finger control modes
at each instant [8] into our graspless manipulation planner.
This method is used to test whether manipulation at an instant
is feasible or not in our planner.

We use a stability index for graspless manipulation pre-
sented in [6] for the control mode determination, although our
previous paper [3] adopted another index proposed in [11].
This is because we found that graspless manipulation even
with a high value of the index in [11] can be easily perturbed
by a small external disturbance; the index in [6] evaluates
the robustness of manipulation against external disturbances
directly, but the index in [11] does not.

The procedure of the control mode determination is to
find the “optimal” combination of finger control modes (and
desired normal forces for force-controlled fingers). Thus we
search a combination of control modes for all the robot fingers
that maximizes the manipulation stability, as far as excessive
internal force could not be generated. A brief description of
the method is given below. See [8] for the details.

B. Stability Measure for Graspless Manipulation

The performance index of manipulation stability defined
in [6] evaluates how much the object can resist external
disturbances without changing its motion. The value of the
index, z, can be calculated approximately by solving the
following linear programming problem:

maximize z

subject to

zl1 = R1/2 (Qknown + W envCenvkenv 1

+W robCrobkrob 1)
...

zlN = R1/2 (Qknown + W envCenvkenv N

+W robCrobkrob N)
NT

robCrobkrob 1 ≤ fmax
...

NT
robCrobkrob N ≤ fmax

NT
robAforceCrobkrob 1 = f com

...
NT

robAforceCrobkrob N = f com

kenv 1, . . . , kenv N ≥ 0, krob 1, . . . , krob N ≥ 0,

(5)

where fcom := [fcom1, . . . , fcom n]T ∈ �n and fcom i = 0 if
finger i is position-controlled; kenv i and krob i are coefficient
vectors to represent contact forces; Aforce is a selection matrix
defined as:

Aforce := diag(a1, a1, a1, . . . , an, an, an) ∈ �3n×3n

ai :=

{
1 if finger i is force-controlled,
0 if finger i is position-controlled.

l1, . . . , lN ∈ �6 are position vectors of vertices of a hy-
perpolyhedron circumscribed to the six-dimensional unit hy-
persphere, which are used for approximate calculation [6];
R ∈ �6×6 is a positive definite matrix for scaling of force and
moment. R1/2 ∈ �6×6 is the Cholesky decomposition of R,
which is used to introduce the following norm for generalized
forces, Q ∈ �6:∥∥Q

∥∥
R

:=
√

QT RQ =
√

(R1/2Q)T (R1/2Q). (6)

We can have a coordinate-invariant norm by using the follow-
ing scaling matrix:

R := diag(I3, MJ−1) ∈ �6×6, (7)

where M is the mass of the object and J ∈ �3×3 is the inertia
tensor of the object. Regarding Aforce as constant and f com

as variable, we can find f com that achieves the maximum
manipulation stability for Aforce by solving Problem (5).

C. Possibility of Excessive Internal Force

The possibility of excessive internal force can be judged by
the following linear programming problem [12]:

maximize bT
envkenv + bT

robkrob

subject to{
W envCenvkenv + W robAposCrobkrob = 0
kenv ≥ 0, krob ≥ 0,

(8)

where

benv = [1, . . . , 1]T

brob = [bT
rob 1, . . . , b

T
rob n]T ∈ �ns

brob i =

[1, . . . , 1]T ∈ �s

if finger i is position-controlled,
[0, . . . , 0]T ∈ �s

if finger i is force-controlled,

Apos = I3n − Aforce ∈ �3n×3n.

When this linear programming problem is bounded, then the
magnitude of internal force is also bounded; that is, excessive
internal force could not be generated. Otherwise, excessive
internal force might be generated.

D. Procedure for Determining Finger Control Modes

The procedure to determine control modes of robot fingers
(and desired normal forces for force-controlled fingers) is as
follows:

1) Assume a combination of control modes (position con-
trol or force control) for each robot finger.

2) Test the possibility of excessive internal force (Prob-
lem (8)). If excessive internal force may be generated,
give up this combination and go to step 4.

3) Calculate desired normal finger forces (fcom) so that the
value of manipulation stability, z, will be maximized
(Problem (5)). If the maximized z is larger than the
current maximum value, replace it.

4) If all the combinations of control modes have been
already tested, stop. Otherwise, go back to step 1.

When all the procedure is completed, we have a combination
of control modes that achieves the maximum manipulation
stability, if any. If there exist no combinations of control modes
with a positive value of manipulation stability, the robot fingers
cannot perform the desired object motion stably even against
infinitesimal external disturbances.

IV. PLANNING OF GRASPLESS MANIPULATION

A. Configuration Space

Here we define a configuration space (C-Space) that repre-
sents the degrees of freedom for both the object and the robot
fingertips. We represent positions of the robot fingertips in
manipulation as their locations on the surfaces of the object
[3]. Thus planning of graspless manipulation is transformed
into finding a path in this C-Space.

However, we cannot search the C-Space in the same man-
ner with conventional obstacle avoidance problems because
graspless manipulation may be irreversible and regrasping
causes discontinuous “jump” in this C-Space. Accordingly, we
approximately represent this C-Space by a directed graph re-
ferred to as “manipulation-feasibility graph” [3]; we construct
nodes of the graph by discretizing the C-Space, and connect
the nodes with directed arcs. As a result, planning of graspless
manipulation is reduced to searching this graph.

B. Generation of Manipulation-Feasibility Graph

Lattice points in the C-Space are sampled as possible nodes
of the manipulation-feasibility graph. We accept each of the
sampled points as a valid node if geometrical constraints
are satisfied at the configuration (Fig. 3). We connect two
nodes with a directed arc if the corresponding manipulation
is “feasible”—that is, manipulation stability z is larger than a
threshold, zmin.

Manipulation-feasibility graphs have two kinds of arcs: for
displacement of the object and for regrasping [3].

Arcs for displacement of the object correspond to mov-
ing the object without changing the locations of the robot
fingertips on the surfaces of the object. These arcs connect
adjacent nodes in the C-Space for the displacement of the
object (Fig. 4(a)). We sample several points on each arc and
calculate z at the points. Unless z ≥ zmin at all the points, the
arc is discarded.

Arcs for regrasping correspond to changing a location of
one fingertip on the object with neither moving the object nor
changing locations of the other fingertips. Note that the arcs for
regrasping may be generated between “non-adjacent” nodes,
because a location of a fingertip on the object changes discon-
tinuously by regrasping. At each node in the manipulation-
feasibility graph, we calculate z when a finger is removed.
If z ≥ zmin, the finger can freely change its location on the

object. In this case, we can generate bidirectional arcs for
corresponding regrasping (Fig. 4(b)).

Thus we have a manipulation-feasibility graph for planning.
Note that we do not have to generate all the nodes and the
arcs before graph searching; tests for generating them can be
carried out in graph searching.

C. Cost Assignment for Graph Searching

We have to assign a cost, C, to each arc in the manipulation-
feasibility graph to find the minimum-cost path from a start
node to a goal node by graph searching. In this paper, we
decide the assignment of costs considering the following
demands in this order of priority:

• Minimize the number of regrasping.
• Minimize the displacement of fingertips.
• Maximize the manipulation stability.

The cost assigned to arcs for displacement of the object is:

C = max
i

P∑
j=1

(
1 +

Xstab

zj

)
‖∆qfinger i,j‖, (9)

where ‖∆qfinger i,j‖ is absolute displacement of the i-th fin-
gertip in the j-th segment of the arc that is divided into P
segments; zj is the manipulation stability in a representative
point of the j-th segment; Xstab is a constant that is defined
so that Xstab/zmin � 1.

On the other hand, the cost for arcs for regrasping is:

C = Xregr, (10)

where Xregr is a constant that is much larger than the value
of (9).

D. Heuristic Function for A* Algorithm

We adopt A* algorithm [7] for fast graph searching. A*
algorithm with an admissible heuristic function can find the
minimum-cost path efficiently. The admissible heuristic func-
tion for manipulation planning, H , is designed as follows:

H =

max
i

‖∆q∗
finger i‖

if current fingertip locations are geometrically
feasible even in the goal configuration,

nregrXregr

if current fingertip locations are geometrically
infeasible in the goal configuration,

(11)
where ‖∆q∗

finger i‖ is estimated displacement of i-th finger-
tip from the current configuration to the goal configuration
without changing fingertip locations on the object; nregr is the
number of fingertips whose locations will be geometrically
infeasible in the goal configuration; in other words, nregr is the
minimum number of fingertips that must change their location
on the object by regrasping to achieve the goal configuration.

We assign very large cost to regrasping in our formulation
(10). Therefore good estimation of the necessity of regrasping
is important for the efficiency of graph searching. In order to
accelerate graph searching, the heuristic function (11) utilizes

����

� ��������

� ������
��

	
���
��

Fig. 3. Generation of Nodes

������
�

��	
���
�

��	
���

(a) arcs for displacement of object

������
�

��	
���

��	
���
�

(b) arcs for regrasping

Fig. 4. Generation of Arcs

the fact that regrasping is necessary when a fingertip will
collide with obstacles without changing its location.

V. PLANNED RESULTS

In this section, we present some examples of planned
manipulation by our proposed algorithm. They are graspless
manipulation of a cuboid by two robot fingertips. The compu-
tation times for the examples below are measured on a Linux
PC with Pentium 4 at 2.8 GHz.

Suppose a cuboid whose size is 5 × 5 × 10. The mass
of the object is 1 (M = 1) and its distribution is uniform;
each robot finger is modeled as a sphere whose radius is 1;
the gravitational acceleration is 9.8; the friction coefficient
between the object and the environment is 0.5, and that
between the object and each finger is 0.7; each friction cone
is represented as a polyhedral convex cone with 6 unit edge
vectors (s = 6); fmax = [10, 10]T . Other parameters of the
planning algorithm are as follows:

zmin = 0.5; Xregr = 102; Xstab = 10−2; N = 76; P = 3.

In this section we consider only one degree of freedom for
the manipulated object. The degree of freedom is discretized
into 31 segments. Fingertip locations are limited to 7× 7 grid
points on each face of the object. Thus, the maximum number
of nodes in the manipulation-feasibility graph is 7×7×6C2 ×
31 = 1, 335, 201.

A. Planning of Sliding Operations

Let us consider one-dimensional sliding of the cuboid on a
horizontal plane. In this case, graspless manipulation as shown
in Fig. 5 is generated; one force-controlled finger is located
on the top of the object to press it down and another position-
controlled finger is located behind the object to push it. It takes
533 CPU minutes for this planning with A*. When we do not
use any heuristic functions, 1007 CPU minutes are required.

When we use “weaker” robot fingers by setting fmax =
[5, 5]T , different graspless manipulation is generated (Fig. 6);
both fingers are position-controlled and push the object from
behind. This corresponds to “stable push” [5]. The computa-
tion requires 203 CPU minutes (or 378 CPU minutes without
heuristics).

These results indicates that our algorithm generates grasp-
less manipulation with large internal force like grasping for

(a) start (b) intermediate (c) goal

Fig. 5. Planned Sliding Operation

(a) start (b) intermediate (c) goal

Fig. 6. Planned Pushing Operation

(a) start (0[deg]) (b) inter. (45[deg]) (c) goal (90[deg])

Fig. 7. Planned Tumbling Operation

“strong” robot fingers as in Fig. 5; on the other hand, graspless
manipulation without internal force is generated for “weak”
robot fingers as in Fig. 6.

B. Planning of Tumbling Operations

Let us consider tumbling of the object. When an obstacle
exists behind the object, graspless manipulation as shown in
Fig. 7 is generated; the robot fingers pinch the object to tumble
it down. In this case, one finger is position-controlled and
another finger is force-controlled. The computation time is 84
CPU minutes (or 1294 CPU minutes without heuristics).

When additional obstacle exist by the side of the object,
pinching the object is impossible. In this case, tumbling with
regrasping is generated (Fig. 8). The computation time is 990
CPU minutes (or 1296 CPU minutes without heuristics).

(a) start (0[deg]) (b) before regrasping (33[deg])

(c) after regrasping (33[deg]) (d) goal (90[deg])

Fig. 8. Planned Tumbling Operation with Regrasping

(a) start (b) intermediate (c) goal

Fig. 9. Experiment of Tumbling Operation

C. Execution of Planned Manipulation

We conducted experiments with a robot with a multi-
fingered hand to validate that our method can generate “de-
cent” manipulation. The experimental system consists of a
robot arm with five DOF (degrees of freedom) and a two-
fingered hand attached at the end of the arm. Each finger has
three DOF and a six-axis force sensor at its fingertip.

We used a cork cuboid of 0.092 [kg] as a manipulated
object. Its dimension is 60[mm] × 60[mm] × 100[mm]. The
friction coefficient between the object and fingertips and
that between the object and the environment was identified
as 0.15 and 1.2, respectively, from preliminary experiments.
We planned graspless manipulation of the object using these
values and played back the planned result with the robot.

Here we show a result of tumbling of the object on a plane.
In this case, our algorithm generated pinching of the object
by the fingers to tumble it like the case of Fig. 7; one finger
is force-controlled and another finger is position-controlled
throughout the tumbling operation. The planned operation is
executed successfully by the experimental system (Fig. 9).
Fig. 10 shows finger normal forces in the tumbling operation.
The force-controlled finger (“finger1”) succeeded in applying
normal force roughly as planned.

VI. CONCLUSION

We developed a method of motion planning of robot fin-
gertips for graspless manipulation. The method can generate
a sequence of desired fingertip locations and control modes
to achieve robust graspless manipulation from an initial con-
figuration to a goal configuration. Some planned results by
this method including pushing and tumbling operations were
presented; this indicates our method can plan various graspless

0

2

4

6

8

10

0 10 20 30
time [s]

no
rm

al
 fo

rc
e

[N
]

finger1
finger2
finger1 (planned)

goalstart

Fig. 10. Finger Forces in Tumbling

operations. An experimental result of successful execution of
planned manipulation by a robot with a multi-fingered hand
was also shown.

A major problem in our algorithm is that it requires much
computation for planning. Currently we are trying to incorpo-
rate randomized motion planning techniques into our planner
to reduce the computation time.

ACKNOWLEDGMENTS

The authors would like to thank Yasumichi AIYAMA and
Tsukasa KYOUSOU at University of Tsukuba for their great
assistance in doing experiments. This research was partly
supported by Grant-in-Aid for Encouragement of Young Sci-
entists (A) / Grant-in-Aid for Young Scientists (B), KAKENHI
(13750210), 2001–2002.

REFERENCES

[1] Y. Aiyama, M. Inaba and H. Inoue: “Pivoting: A New Method of
Graspless Manipulation of Object by Robot Fingers,” Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pp. 136–143, 1993.

[2] M. T. Mason: Progress in Nonprehensile Manipulation, Int. J. of
Robotics Research, Vol.18, No.1, pp.1129–1141, 1999.

[3] Y. Maeda, H. Kijimoto, Y. Aiyama and T. Arai: “Planning of Graspless
Manipulation by Multiple Robot Fingers,” Proc. of IEEE Int. Conf. on
Robotics and Automation, pp. 2474–2479, 2001.

[4] M. Kurisu and T. Yoshikawa: “Trajectory Planning of an Object in
Pushing Operation,” Proc. of Japan-USA Symp. on Flexible Automation,
pp. 1009–1016, 1994.

[5] K. Lynch and M. Mason: “Stable Pushing: Mechanics, Controllability,
and Planning,” Int. J. of Robotics Research, Vol. 15, No. 6, pp. 533–556,
1996.

[6] Y. Maeda and T. Arai: “A Quantitative Stability Measure for Graspless
Manipulation,” Proc. of 2002 IEEE Int. Conf. on Robotics and Automa-
tion, pp. 2473–2478, 2002.

[7] J. Pearl: “Heuristics: Intelligent Search Strategies for Computer Problem
Solving,” Addison-Wesley, 1984.

[8] Y. Maeda and T. Arai: “Automatic Determination of Finger Control
Modes for Graspless Manipulation,” Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 2660–2665, 2003.

[9] S. Hirai and H. Asada: “Kinematics and Statics of Manipulation Using
the Theory of Polyhedral Convex Cones,” Int. J. of Robotics Research,
Vol. 12, No. 5, pp. 434–447, 1993.

[10] M. H. Raibert and J. J. Craig: “Hybrid Position/Force Control of Ma-
nipulators,” ASME J. of Dynamic Systems, Measurement, and Control,
Vol. 102, No. 2, pp.126–133, 1981.

[11] H. Kijimoto, T. Arai, Y. Aiyama and T. Yamamoto: “Performance
Analysis and Planning of Graspless Manipulation,” Proc. of IEEE Int.
Symp. on Assembly and Task Planning, pp.238–243, 1999.

[12] Y. Maeda, Y. Aiyama, T. Arai and T. Ozawa: “Analysis of Object-
Stability and Internal Force in Robotic Contact Tasks,” Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 751–756,
1996.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 2951
	02: 2952
	03: 2953
	04: 2954
	05: 2955
	06: 2956

