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Abstract

In this paper, the stability of objects in graspless
manipulation (or nonprehensile manipulation) is in-
vestigated. In contrast with the stability of grasps, it
is crucial for the stability of graspless manipulation to
evaluate frictional forces applied to objects in contact
motion. We formulate the effect of Coulomb friction
and propose a quantitative stability measure for grasp-
less manipulation. The measure can be calculated
approximately with linear programming. Finally, we
show numerical examples. Our stability measure will
be useful in planning of graspless manipulation.

1 Introduction

Graspless manipulation [1] (or nonprehensile manip-
ulation [2]) is a method to manipulate objects without
grasping. It includes tumbling, pushing, sliding, and
so on (Figure 1). In graspless manipulation, robots do
not have to support all the weight of the objects. That
is a potential advantage of graspless manipulation over
conventional pick-and-place. Thus graspless manipu-
lation is important as a complement of pick-and-place
for the dexterity of robots.
Graspless manipulation is obviously inferior to pick-

and-place in terms of operation reliability. Therefore
it is important to evaluate the stability of manipulated
objects for planning and execution of graspless manip-
ulation.
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Figure 1: Graspless Manipulation

The stability of graspless manipulation is consider-
ably affected by gravity and friction. Because fric-
tional force is ruled by sliding of the manipulated ob-
jects, the stability depends on their motion. That
means we should evaluate the stability of the objects in
graspless manipulation considering the effect of their
motion. In this paper, we call the stability of objects
in manipulation “stability of manipulation,” to distin-
guish from the stability of stationary objects.
Many researchers deal with the evaluation of the

grasp stability [3, 4]. However, few of their results
can be applied to graspless manipulation straightfor-
wardly. ThoughMason and Lynch coined “quasi-static
closure” and “dynamic closure” for the stability of ma-
nipulation [5], they did not formulate them. Trin-
kle et al. formulated “first-order stability” in detail
for whole-arm manipulation [6]. Although first-order
stability will be also valid for graspless manipulation,
they presented no quantitative measure. Kijimoto
et al. proposed a performance index for quasi-static
graspless manipulation [7]. The index evaluates the
stability of graspless manipulation by the minimum
margin of contact force at each contact point. How-
ever, the physical meaning of the index is ambiguous
on the treatment of sliding contacts and substitution
of surface contacts with multiple point contacts. Yu
and Yoshikawa defined a stability measure, “constraint
maintainability,” for robotic contact tasks [8, 9]. The
measure neglects the effect of gravity, therefore it is not
suitable for graspless manipulation. Moreover, both
[7] and [8, 9] did not deal with the contact forces of
surface or line contacts in rotation.
The authors proposed a quantitative stability mea-

sure for objects in contact with the environment [10].
However, the measure can be applied only to graspless
manipulation without sliding contacts. In this paper,
we extend the measure to be applicable to quasi-static
graspless manipulation with sliding.
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2 Stability of Graspless Manipulation

In order to evaluate the “stability” of graspless ma-
nipulation, we should consider the following two prop-
erties:

(1) The ability of manipulated objects to resist dis-
turbing force in any direction without changing
their motion.

(2) The ability of manipulated objects to resume their
original motion after a perturbation by disturbing
force in any direction.

Graspless manipulation with loose constraints, such
as pushing by position-controlled robots, requires the
evaluation of the property (1). On the other hand,
graspless manipulation with tight constraints, such as
pivoting by force-controlled robot fingers, requires the
evaluation of the property (2). We should evaluate
the property (1) first for graspless manipulation be-
cause there exist contacts with the environment. The
evaluation of the property (2) is very similar to that of
conventional grasp stability (for example, [11]). There-
fore, this paper deals with quantitative evaluation of
the property (1) in graspless manipulation.

3 Modeling of Manipulation

3.1 Assumptions

In this paper, for graspless manipulation of an object
by robot fingers, we make the following assumptions:

• The manipulated object and the environment are
spatial rigid polyhedra.

• Position-controlled robot fingers are rigid enough
to be equivalent to the environment.

• Each of force-controlled robot fingers is in one-
point contact with the object.

• Contact surfaces between the object and the envi-
ronment (or position-controlled robots) are poly-
gons.

• Friction is under Coulomb’s law. Friction coeffi-
cients on a contact surface are uniform.

• Static and kinetic friction coefficients are equal.

• Manipulation is quasi-static.

In this paper, we regard line contacts as special sur-
face contacts, and may refer to lines as “surfaces.”

3.2 Model of Contact Forces

Let us denote the set of positions of contacts be-
tween the object and the environment (or equivalently,
position-controlled robots) by Cenv. Similarly, let Crob

be the set of positions of contacts between the object
and force-controlled robots. We write the sets of po-
sitions of sliding and non-sliding contacts as Cslide and
Cstat, respectively. The set of positions of all the con-
tacts, C, is:

C = Cslide ∪ Cstat = Cenv ∪ Crob. (1)

We set a reference frame whose origin coincides with
the center of mass of the object, and denote each posi-
tion of contacts in the frame by p(∈ C). A(p) ⊂ �6 is
the set of generalized forces (forces and moments about
the center of mass of the object) that can be applied
through the contact point. We approximate each fric-
tion cone at the contact points by a polyhedral convex
cone with unit edge vectors, c1(p), . . . , cs(p) ∈ �3.
For p ∈ Cenv ∩ Cstat, we have:

A(p) =

{(
f

p × f

)∣∣∣∣∣f ∈ span{c1(p) . . .cs(p)}
}

,

(2)
where span{. . .} is a polyhedral convex cone spanned
by its element vectors [12]. A(p) also forms a polyhe-
dral convex cone.
For p ∈ Cenv ∩ Cslide,

A(p) =

{(
f

p × f

)∣∣∣∣∣f ∈ span{c′(p)}
}

, (3)

where c′(p) ∈ �3 is a unit edge vector of the friction
cone at the contact point opposite to the sliding direc-
tion.
For p ∈ Crob ∩ Cstat, we have:

A(p) =

{(
f

p × f

) ∣∣∣∣∣
f ∈ span{c1(p) . . . cs(p)}, τ (p) = J(p)T f

}
, (4)

where τ (p) is a joint torque vector, and J(p) is a Jaco-
bian matrix of the finger corresponding to the contact
point p. We assume τ (p) to be constant, and thus
A(p) forms a convex hyperpolyhedron.
Similarly, for p ∈ Crob ∩ Cslide,

A(p) =

{(
f

p × f

) ∣∣∣∣∣
f ∈ span{c′(p)}, τ (p) = J(p)T f

}
. (5)
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For simplicity, we assume that there exist no defec-
tive contacts [13, 14], i.e., rankJ(p) = 3.
When we replace all the contacts by finite contact

points, p1, . . . , pm ∈ C, the set of generalized forces
applicable to the object through the contacts, A ⊂ �6,
can be approximated as follows [8, 9]:

A =
⋃
i

{ ⊕
pj∈Crob∪Cenvi

A(pj)
}
, (6)

where

Cenvi ∈
{
{pj}

∣∣∣∣pj ∈ Cenv,(
nj

pj × nj

)
are linearly independent

}
.

nj is the unit normal vector at pj and ⊕ denotes the
Minkowski sum. Note that we cannot necessarily ap-
ply arbitrary forces in A actively. This is because A
contains forces that can be generated only as reaction.

4 Formulation of Contact Forces

4.1 Manipulation without Surface Con-
tacts in Rotation

In the case of manipulation without surface contacts
in rotation, we can replace a surface contact with its
equivalent point contacts, vertices of the convex hull
of the surface. Eq. (6) can be rewritten as follows:

A =
⋃
i

{Q ∣∣ Q = W iCik, k ≥ 0, τ i = JT
i Cik}, (7)

where

W i =
[
. . . I3 . . .
. . . pj × I3 . . .

]
(pj ∈ Crob ∪ Cenvi)

Ci = diag(. . . , Cij , . . .)

Cij =




[
c1(pj) . . . cs(pj)

] ∈ �3×s

(pj ∈ Cstat ∩ (Crob ∪ Cenvi))
[c′(pi)] ∈ �3×1

(pi ∈ Cslide ∩ (Crob ∪ Cenvi))

J i = diag(. . . , J ij, . . . )

J ij =

{
J(pj) (pj ∈ Crob)
O (pj ∈ Cenvi)

τ i = [. . . , τT
ij , . . . ]

T

τ ij =

{
τ (pj) (pj ∈ Crob)
0 (pj ∈ Cenvi).

Instantaneous
Center of Rotation

Instantaneous
Center of 
Rotation

Figure 2: Frictional Force of Half-Line Contact in Ro-
tation

Instantaneous
Center of 
Rotation

Instantaneous
Center of Rotation

Figure 3: Representative Points for Surface Contact in
Rotation

I3 is the 3 × 3 identity matrix, and pj × I3 ∈ �3×3

is a linear transformation equivalent to cross product
with pj.
Eq. (7) forms a union of polyhedral convex cones in

�6.

4.2 Manipulation with Surface Contacts
in Rotation

In the case of manipulation with surface contacts in
rotation, the set of contact forces by the surface cannot
be replaced equivalently by the effect of vertices of the
convex hull of the surface (See numerical examples in
Section 6). This fact was not referred to in [7, 8, 9].
Here we formulate the set of applicable (generalized)
forces by a surface contact in rotation, Arot ⊂ �6.
To begin with, when the instantaneous center of ro-

tation (COR) of a contact surface is outside the sur-
face, Arot can be replaced equivalently by the effect of
all the contact points on the boundary of the surface.
This is because all the contact forces on a half-line that
passes the instantaneous COR have the same direc-
tion vector; therefore the resultant generalized force of
all the contact points on the intersection between the
half-line and the surface can be represented by the ef-
fect of point contacts at the intersections between the
half-line and the boundary of the surface (see Figure
2, left). Similarly, when the instantaneous COR is on
the surface, Arot can be replaced equivalently by the
effect of all the contact points on the boundary of the
surface and the COR (see Figure 2, right).
However, we still have to consider infinite contact

points to obtain Arot. Thus we approximate Arot
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with the effect of contact forces at finite representa-
tive points as follows:

1. If the COR is outside the contact surface (Figure
3, left), we draw several half-lines that pass the
COR. We choose intersections of these half-lines
and the boundary of the surface as representative
points. Besides, vertices of the surface are also
chosen as representative points.

2. If the COR is on the contact surface (Figure 3,
right), we also draw several half-lines that pass
the COR. We choose intersections of these half-
lines and the boundary of the surface, vertices of
the surface, and the COR as representative points.
The COR is regarded as a non-sliding contact
point.

We can express the set of applicable contact forces
by a union of polyhedral convex cones as Eq. (7) ap-
proximately using the above-mentioned representative
points, even if the object has surface contacts in rota-
tion. When we draw more half-lines and choose a lot
of representative points, the approximation can be to
arbitrary precision.
Even when we calculate performance indices in [7]

and [8, 9], the above treatment is still necessary for
manipulation with surface contacts in rotation.

5 Quantitative Evaluation of Stability
of Graspless Manipulation

5.1 Stability Measure

In this section we define a measure to evaluate the
stability of graspless manipulation in terms of the mag-
nitude of disturbing (generalized) force that the object
can resist without changing its motion. This is an ex-
tended version of a stability measure defined in [10],
which was applicable only to non-sliding cases. In the
literature of power grasp, similar stability measures for
grasped objects were proposed [15, 16]. However, there
is a difference between the important point for the sta-
bility of tightly-constrained objects in power grasp and
that of loosely-constrained objects in graspless manip-
ulation. Our stability measure is distinct from those
in [15] and [16] in the following ways:

1. Our measure can deal with the stability of ma-
nipulated objects in motion. The measures in
[15] and [16] deal with the stability of station-
ary objects in power grasp, and cannot be applied
straightforward to graspless manipulation, where
the stability of the objects is considerably affected
by whether they are in motion or not.

2. Our measure takes gravity into account. In [16],
gravity is neglected. The measure in [15] deals
with only gravity that affects joint torques, there-
fore it is not suitable for graspless manipulation
in which objects may be loosely constrained.

A sort of scaling is necessary for quantitative eval-
uation of the magnitude of generalized forces, because
forces and moments have different physical dimen-
sions. In this paper, we use a norm for generalized
forces, Q ∈ �6, as follows:

‖Q‖M =
√

QT M−1Q, (8)

where M ∈ �6×6 is the inertia matrix of the manipu-
lated object. The norm is coordinate-invariant. Physi-
cally, Eq. (8) evaluates the magnitude of a generalized
force in terms of kinetic energy given to the object
when the generalized force is applied to the object in
a certain infinitesimal time.
We denote the known external force applied to the

object, such as gravity, by Qknown ∈ �6. The unknown
disturbing force is denoted by Qdist ∈ �6. The equi-
librium equation of the quasi-statically manipulated
object is: {

Qknown + Q = −Qdist

Q ∈ A (9)

Then we define a stability measure z for graspless ma-
nipulation as the solution of the following minimax
problem:

z = min
‖Q̂dist‖M =1

max
Qknown+Q=−tQ̂dist,

t>0,Q∈A

‖Qknown +Q‖M .

(10)
If ‖Qdist‖M < z, the object motion is not perturbed.

When the above minimax problem is infeasible, the
quasi-static manipulation is impossible even with no
disturbance.
Actually, stability evaluation is not enough to plan

and execute graspless manipulation, because it is also
necessary to avoid excessive internal force applied to
the object. We can judge the possibility of excessive
internal force with linear programming [10], and ex-
clude improper manipulation.

5.2 Calculation of Stability Measure

Here we show a method to solve the minimax prob-
lem (Eq. (10)) approximately with linear program-
ming. The value of z is the radius of the inscribed
hypersphere whose center is −Qknown in A. Approx-
imating the hypersphere with a circumscribed convex
hyperpolyhedron (see Figure 4 for a three-dimensional
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Figure 4: Approximate Calculation of Stability Mea-
sure

x
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Figure 5: Example: Pushing Cuboids
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Figure 6: Example: Rotating a Cuboid

schematic sketch), we can calculate the approximate
value of z as the following linear programming prob-
lems:

z = min
i=1,...,N

zi (11)

zi = max
j

zij (12)

subject to




zijli = Qknown +W jCjkij

τ j = JT
j Cjkij

kij ≥ 0,

where l1, . . . , lN ∈ �6 are position vectors of vertices of
a hyperpolyhedron circumscribed to a six-dimensional
unit hypersphere whose center is the origin. Stability
evaluation by the above linear programming is conser-
vative when the set of generalized forces represented
by Eq. (7) is convex. We can approximate the value
of z to arbitrary precision by increasing N .

6 Numerical Examples

Let us consider graspless manipulation of a cuboid
on a plane for numerical examples. The size of
the object is 2 × 2 × 1 and the center of mass
is located at (0, 0, 0)T . The mass of the object

Table 1: Approximate Values of Stability Measure

Representative Points Calculated
Value

the instantaneous COR,
four vertices, and four other
points on the boundary

z = 1.2

the instantaneous COR and
four vertices

z = 1.1

four vertices of the bottom
surface

z = 0.7

is 1 and the mass distribution is uniform, then
we have Qknown = (0, 0,−9.8, 0, 0, 0)T and M =
diag(1, 1, 1, 5/12, 5/12, 2/3). Friction coefficient is 0.2
and each friction cone is represented as a polyhedral
convex cone with 12 unit edge vectors. For simplicity,
all the robot fingers are position-controlled (Crob = ∅).
Here we approximate the 6-dimensional unit hyper-
sphere as a circumscribed hyperpolyhedron with 76
vertices, and calculate the stability measure in several
cases.
In the case of one-point pushing of the object at

(1, 0, 0)T toward (−1, 0, 0)T -direction (Figure 5, left),
the stability measure z = 0. That is, this manipula-
tion is not stable because an infinitesimal disturbance
can perturb the motion of the object. If the object is
stationary, of course, the object is stable and z = 1.3.
This affords an example that shows the importance of
evaluating the stability of the object in manipulation.
On the other hand, in the case of two-point pushing

at (1,±1/2, 0)T (Figure 5, right), z = 0.23. That is,
the object can resist disturbing force whose magnitude
is at least 0.23 (in the sense of Eq. (8)) without chang-
ing its motion. That corresponds to a stable push [17]
by a position-controlled pusher with line contact.
As an example of manipulation with a surface con-

tact in rotation, let us consider rotating the cuboid
around a vertical axis that passes the center of mass
(Figure 6). The cuboid is in two-point contact at
(±1,∓1/2, 0)T with robot fingers. In this case, the
approximate value of z depends largely on the choice
of representative points for the bottom surface. As
shown in Table 1, the stability is underestimated when
we choose only the four vertices of the surface as rep-
resentative points. Therefore it is not appropriate to
model a surface contact in rotation using point con-
tacts only at vertices of the surface.
It takes about 0.1 through 1.3 CPU seconds to cal-

culate a value of the stability measure for the above
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examples on a Linux PC with Pentium4–1.5GHz.

7 Conclusion

We proposed a quantitative measure to evaluate the
stability of graspless manipulation. The measure can
be calculated with linear programming. We also pre-
sented a method to approximate the set of contact
forces of surface contacts in rotation by multiple point
contacts.
Now we are trying to incorporate this measure into

our planning algorithm of graspless manipulation [18]
to obtain robuster manipulation.
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