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Abstract— To achieve various manipulation tasks by robot
fingers, we have to use both position control and force
control appropriately. In this paper, we propose a method to
determine such control modes of robot fingers in graspless
manipulation. Using the method, we can assign a position- or
force-control mode to each robot finger so that the maximum
manipulation stability will be achieved without excessive
internal force. Desired finger forces are also determined for
robot fingers to be force-controlled. We show some numerical
examples of automatic determination of control modes in
graspless manipulation of polyhedra on a plane by two robot
fingers.

I. INTRODUCTION

Graspless manipulation [1] (or nonprehensile manipula-
tion [2]) is a method to manipulate objects without grasp-
ing. In this paper, we deal with graspless manipulation
where the manipulated object is supported not only by
robot fingers but also by the environment (Fig. 1). Such
contact tasks are usually performed by force-controlled
robots to avoid excessive internal force. In some cases,
however, force control is inappropriate in terms of manip-
ulation stability; even minute disturbance could perturb
the path of the manipulated object. Pushing operation
on a plane is a typical example and therefore usually
performed by a position-controlled pusher (for example,
“stable push” [3]). Thus we have to use both position
control and force control appropriately to achieve various
robotic graspless manipulation.

In this paper, graspless manipulation by multiple robot
fingers is studied. We develop an algorithm to determine
control modes of robot fingers automatically; we can
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Fig. 1. Graspless Manipulation

choose whether each robot finger should be position-
controlled or force-controlled with this algorithm. Desired
finger forces are also determined for force-controlled
fingers. The validity of this algorithm is assessed by
numerical examples of typical graspless operations.

II. MODEL OF GRASPLESS MANIPULATION

A. Assumptions

In this paper, we make the following assumptions:
• The manipulated object, robot fingertips, and the

environment are rigid.

• Manipulation is quasi-static.

• Coulomb friction exists between the object and the
environment (or robot fingers).

• Static and kinetic friction coefficients are equal.

• All the contacts can be approximated by finite point
contacts [4].

• All the friction cones can be approximated by poly-
hedral convex cones [5].

• Each robot finger is in one-point non-sliding contact
with the object.

• The normal component of each finger force has an
upper limit.

• Each robot finger is either in position-control mode
or in force-control mode.

• A robot finger in position-control mode can apply
arbitrary force within its friction cone passively.

• A robot finger in force-control mode is in hybrid
position/force control [6]; the finger can apply the
commanded normal force actively and apply arbitrary
tangential force within its friction cone passively.

The problem to be solved is to determine whether
each robot finger should be position-controlled or force-
controlled, and moreover, to determine the desired normal
forces for force-controlled fingers, when the desired object
motion and the positions of the robot fingertips on the
object are specified.

In this paper, we deal with mechanical analysis of
graspless manipulation at an instant; therefore commanded
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Fig. 2. Object in Graspless Manipulation

positions of robot fingers are regarded as constant. In
real manipulation, however, commanded positions of robot
fingers are updated step by step based on the desired
object motion. Accordingly, even position-controlled robot
fingers could manipulate the object.

B. Mechanical Model

Consider graspless manipulation of an object as in
Fig. 2. We set an object reference frame whose origin
coincides with the center of mass of the object. Let
penv 1, . . . , penv m ∈ �3 be positions of contact points
between the object and the environment. Similarly, let
prob 1, . . . , prob n ∈ �3 be positions of contact points
between the object and the robot finger 1, . . . , n. We
denote inward unit normal vectors at contact point p by
n(p) ∈ �3.

Let us denote the sets of positions of sliding and non-
sliding contacts by Cslide and Cstat, respectively. We can
identify whether penv i ∈ Cslide or penv i ∈ Cstat, because
the object motion is specified. We approximate each
friction cone at contact point p by a polyhedral convex
cone with unit edge vectors, c1(p), . . . , cs(p) ∈ �3. For
penv i ∈ Cslide, let c′(penv i) ∈ �3 be a unit edge vector
of the friction cone at contact point penv i opposite to its
sliding direction.

The set of possible contact force f ∈ �3 at penv i can
be written as follows:




{
f

∣∣f ∈ span{c1(penv i) . . . cs(penv i)}
}

if penv i ∈ Cstat,{
f

∣∣f ∈ span{c′(penv i)}
}

if penv i ∈ Cslide,

(1)

where span{. . . } is a polyhedral convex cone spanned
by its element vectors [5]. On the other hand, the set of

possible contact force f at prob i is:


{
f

∣∣f ∈ span{c1(prob i) . . . cs(prob i)},
n(prob i)T f ≤ fmax i

}
if robot finger i is position-controlled,{

f
∣∣f ∈ span{c1(prob i) . . . cs(prob i)},

n(prob i)T f = fcom i ≤ fmax i

}
if robot finger i is force-controlled,

(2)

where fmax i is the upper limit of normal force and fcom i

is the commanded normal force for robot finger i.
Then we define the following matrices:

W env :=
[

I3 . . . I3

penv 1 × I3 . . . penv m × I3

]
∈ �6×3m

Cenv := diag(Cenv 1, . . . , Cenv m)

Cenv i :=




[c1(penv i) . . . cs(penv i)] ∈ �3×s

if penv i ∈ Cstat

[c′(penv i)] ∈ �3×1

if penv i ∈ Cslide

W rob :=
[

I3 . . . I3

prob 1 × I3 . . . prob n × I3

]
∈ �6×3n

Crob := diag(Crob 1, . . . , Crob n) ∈ �3n×ns

Crob i := [c1(prob i) . . . cs(prob i)] ∈ �3×s

N rob := diag(n(prob 1), . . . , n(prob n)) ∈ �3n×n,

where I3 is the 3× 3 identity matrix, and p× I3 ∈ �3×3

is a linear transformation equivalent to cross product with
p.

Without external disturbances, the equilibrium equation
of the object can be expressed as:

Qknown + W envCenvkenv + W robCrobkrob = 0, (3)

where kenv(≥ 0) and krob(≥ 0) are coefficient vectors
to represent contact forces; Qknown ∈ �6 is the known
external (generalized) force applied to the object such as
gravity. The limitation on the magnitude of normal finger
forces can be written as:

NT
robCrobkrob ≤ fmax, (4)

where fmax = [fmax 1, . . . , fmax n]T ∈ �n.

III. DETERMINATION OF FINGER CONTROL MODES

A. Basic Idea

To determine “appropriate” control modes of robot fin-
gers, we need a principle for determination. For graspless
manipulation, we have a quantitative stability measure [4].
The measure can be regarded as a performance index
for “quasi-static closure” [7]; it evaluates the stability
of graspless manipulation in terms of the magnitude of
disturbing (generalized) force that the object can resist
without changing its motion. Here, we determine the
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finger control modes to maximize the stability measure,
because graspless manipulation is usually less robust than
manipulation by grasping.

In order to increase the value of the stability measure,
position control is preferable to force control. This is
because a robot finger in position control can apply
a wider variety of finger forces passively than that in
force control. Position-controlled fingers, however, may
generate excessive internal force in contact tasks (Fig. 3).

Thus, we select a combination of control modes for all
the robot fingers that achieves the maximum manipulation
stability, as far as excessive internal force could not be
generated. Hereafter we develop a procedure to select
the “optimal” combination of finger control modes (and
desired normal forces for force-controlled fingers).

B. Stability Measure for Graspless Manipulation

The value of manipulation stability defined in [4] can
be calculated approximately by solving a series of linear
programming problems. If we assume that all the com-
binations of possible contact forces are also possible, the
stability value z can be calculated by the following single
linear programming problem:

maximize z

subject to


zl1 = R1/2 (Qknown + W envCenvkenv 1

+W robCrobkrob 1)
...

zlN = R1/2 (Qknown + W envCenvkenv N

+W robCrobkrob N )
NT

robCrobkrob 1 ≤ fmax
...

NT
robCrobkrob N ≤ fmax

NT
robAforceCrobkrob 1 = f com

...
NT

robAforceCrobkrob N = f com

kenv 1, . . . , kenv N ≥ 0
krob 1, . . . , krob N ≥ 0,

(5)

where f com = [fcom 1, . . . , fcom n]T ∈ �n and fcom i =
0 if finger i is position-controlled; kenv i and krob i are
coefficient vectors to represent contact forces; Aforce is a
selection matrix defined as:

Aforce := diag(a1, a1, a1, . . . , an, an, an) ∈ �3n×3n

ai :=

{
1 if finger i is force-controlled

0 if finger i is position-controlled;

l1, . . . , lN ∈ �6 are position vectors of vertices of a hy-
perpolyhedron circumscribed to the six-dimensional unit
hypersphere, which are used for approximate calculation

position-controlled
finger

Fig. 3. Excessive Internal Force in Manipulation

[4]; R ∈ �6×6 is a positive definite matrix for scaling
of force and moment. R1/2 ∈ �6×6 is the Cholesky
decomposition of R, which is used to introduce the
following norm for generalized forces, Q ∈ �6:

∥∥Q
∥∥

R
:=

√
QT RQ =

√(
R1/2Q

)T (
R1/2Q

)
. (6)

We can have a coordinate-invariant norm by using, for
example, the following scaling matrix:

R :=
[
I3 O

O MJ−1

]
∈ �6×6, (7)

where M is the mass of the object and J ∈ �3×3 is the
inertia tensor of the object. Regarding Aforce as constant
and f com as variable, we can find f com that achieves the
maximum manipulation stability for Aforce by solving the
linear programming problem (5).

As mentioned above, we have introduced an assumption
that all the combinations of possible contact forces are also
possible. Of course, this simplification is optimistic. When
friction is small, however, the above simplification does
not have big effect on the value of stability measure. This
is because a resultant force of an impossible combination
of contact forces is often equivalent to a resultant force
of a possible combination of contact forces. Therefore, in
this paper, we use the linear programming problem (5)
to evaluate the stability of graspless manipulation. For
cases with large friction, more conservative estimation
of possible contact forces [8]–[11], which would require
more complicated calculation, should be employed.

C. Possibility of Excessive Internal Force

The possibility of excessive internal force can be judged
by the following linear programming problem [12]:

maximize bT
envkenv + bT

robkrob

subject to{
W envCenvkenv + W robAposCrobkrob = 0
kenv ≥ 0, krob ≥ 0,

(8)

where

benv = [1, . . . , 1]T

brob = [bT
rob 1, . . . , b

T
rob n]T ∈ �ns
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brob i =




[1, . . . , 1]T ∈ �s

if finger i is position-controlled

[0, . . . , 0]T ∈ �s

if finger i is force-controlled

Apos = I3n − Aforce ∈ �3n×3n.

When this linear programming problem is bounded, then
the magnitude of internal force is also bounded; that is,
excessive internal force could not be generated. Otherwise,
excessive internal force might be generated.

Note that we can test just a necessary condition for
excessive internal force using the linear programming
problem (8). Stricter tests might be possible but time-
consuming, therefore we use the problem (8) to determine
control modes of robot fingers.

D. Procedure for Determining Finger Control Modes

Now we can devise a procedure to determine control
modes of robot fingers (and desired normal forces for
force-controlled fingers) as follows:

1) Assume a combination of control modes (position
control / force control) for each robot finger.

2) Check the possibility of excessive internal force
(Problem (8)). If excessive internal force may be
generated, give up this combination and go to step 4.

3) Calculate desired normal finger forces (f com) so
that the value of manipulation stability, z, will be
maximized (Problem (5)). If the maximized z is
larger than the current maximum value, update the
maximum value.

4) If all the combinations of control modes have been
already checked, stop. Otherwise, go back to step 1.

When all the procedure is completed, we can select a
combination of control modes that achieves the maximum
manipulation stability. If there exist no combinations of
control modes with a positive value of manipulation
stability, the robot fingers cannot perform the desired
object motion stably even against infinitesimal external
disturbances.

In the above procedure, we have to solve linear pro-
gramming problems repeatedly. A naive implementation
of testing all the combinations of control modes (2n pat-
terns) is time-consuming. However, the following charac-
teristics of this problem enable more effective calculation:

1) When changing control modes of one or more fingers
from position control to force control, the value of
manipulation stability is equal to or smaller than that
of the original combination.

2) If the possibility of excessive internal force exists
for a combination of finger control modes, there also
exists the possibility of excessive internal force for
other combinations in which control modes of one

robot fingers
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Fig. 4. Sliding a Cuboid

or more fingers are changed from force control to
position control.

Taking these characteristics into consideration, we can
omit to test some combinations of finger control modes. In
our current implementation, first we test the case where
all the fingers are position-controlled, and then increase
the number of force-controlled fingers and check the new
combination. This is to reduce the number of times of
solving the problem (5), because the problem (5) is much
more complex and time-consuming than the problem (8).

IV. NUMERICAL EXAMPLES

We implemented the above procedure as a computer
program, which uses GLPK (GNU Linear Programming
Kit) [13] to solve linear programming problems. Here
we show some numerical examples calculated by this
program. The computation times for the examples are
measured on a Linux PC with Pentium4–1.6GHz.

Let us consider graspless manipulation by two robot
fingers. The manipulated object is a polyhedron, whose
mass distribution is uniform; the gravitational acceleration
is 9.8; the friction coefficient between the object and
the environment is 0.2, and that between the object and
each finger is 0.5; each friction cone is represented as a
polyhedral convex cone with 6 unit edge vectors (s = 6);
fmax = [10, 10]T .

Here we adopt (7) to calculate the stability mea-
sure for graspless manipulation. We approximate the 6-
dimensional unit hypersphere as a circumscribed hyper-
polyhedron with the following 76 vertices (N = 76):

{li} :=
{
k[±1, 0, 0, 0, 0, 0]T , k[0,±1, 0, 0, 0, 0]T ,

k[0, 0,±1, 0, 0, 0]T , k[0, 0, 0,±1, 0, 0]T ,

k[0, 0, 0, 0,±1, 0]T , k[0, 0, 0, 0, 0,±1]T ,

k√
6
[±1,±1,±1,±1,±1,±1]T

}
, (9)

where k = 2
√

3 −√
6 (≈ 1.48).

A. Example 1: Sliding a Cuboid on a Plane

Suppose sliding a cuboid whose size is 2 × 2 × 1 on a
horizontal plane (Fig. 4). The mass of the object is 1 (M =
1). The object reference frame is set as shown in the figure.

2663



x

y
z
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Two robot fingers translate the cuboid in the (−1, 0, 0)T -
direction. In this case, J = diag(5/12, 5/12, 2/3) and
Qknown = [0, 0, −9.8, 0, 0, 0]T .

In the case of pushing the cuboid at (1,±1/2, 0)T from
behind (Fig. 4, left), our program says that both fingers
should be position-controlled. The stability value is 0.6.
This case corresponds to Lynch’s “stable push” [3], [4].

In the case of pinching the cuboid at (0,±1, 0)T (Fig. 4,
middle), one finger should be position-controlled, and the
other should be force-controlled. Note that these control
modes can be swapped because of the symmetry. The
desired normal force for the force-controlled finger is
6.5(< fmax i), and the stability value is 2.4. In this
case, the force-controlled finger should push the object
at “moderate” force to achieve the maximum stability; we
should leave a some margin for its counterpart finger.

In the case of dragging the cuboid at (0,±1/2, 1/2)T

(Fig. 4, right), both fingers should be force-controlled. The
desired normal force for both fingers is 10(= fmax i); that
is, both fingers should push the object at their maximum
force because the environment can apply unlimited reac-
tion force. In this case, the stability value is 1.7.

It takes 0.02 through 0.7 CPU seconds for each of
above calculation. Most of computation time is dedicated
to solving the problem (5).

B. Example 2: Tumbling a Cuboid

Let us consider tumbling a cuboid whose size is 1×1×2
(Fig. 5). The mass of the object is 1 (M = 1). The object
reference frame is set as shown in the figure. In this case,
J = diag(5/12, 5/12, 1/6). When the tilt angle of the
object is 30[deg], Qknown = [4.9, 0, −8.5, 0, 0, 0]T .

In the case of pinching the cuboid at (0,±1/2, 1/2)T

(Fig. 5, left), one finger should be position-controlled, and
the other should be force-controlled. These control modes
can be swapped because of the symmetry. The desired
normal force for the force-controlled finger is 8.8, and the
stability value is 2.5. It takes 1.1 CPU seconds for this
calculation.

On the other hand, when the fingertips are located at
(0, 0, 1)T and (1/2, 0, 1/2)T (Fig. 5, right), both fingers
should be position-controlled. The stability value is 1.2.
It takes 0.01 CPU seconds for this calculation.

robot fingers
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Fig. 6. Sliding a Pyramid

Note that these are results of instantaneous analysis; the
optimal control modes depend on the tilt angle.

C. Example 3: Sliding a Pyramid

Let us consider sliding a square pyramid whose base
edge is 2 and whose height is 2 (Fig. 6). This is an
example that fingertips are located on faces that are
neither parallel nor perpendicular to each other. The
mass of the object is 1 (M = 1). The object refer-
ence frame is set as shown in the figure. Two robot
fingers translate the pyramid in the (−1, 0, 0)T -direction.
In this case, J = diag(7/20, 7/20, 2/5) and Qknown =
[0, 0, −9.8, 0, 0, 0]T .

In the case of pinching the pyramid at (±1/2, 0, 1/2)T

(Fig. 6, left), one finger located at (−1/2, 0, 1/2)T

should be position-controlled, and the other located at
(1/2, 0, 1/2)T should be force-controlled. The desired
normal force for the force-controlled finger is 10(=
fmax i), and the stability value is 4.0. It takes 0.6 CPU
seconds for this calculation.

In the case of pinching the pyramid at (0, ±1/2, 1/2)T

(Fig. 6, right), one finger should be position-controlled,
and the other should be force-controlled. These control
modes can be swapped because of the symmetry. The
desired normal force for the force-controlled finger is
10(= fmax i), and the stability value is 2.9. It takes 0.8
CPU seconds for this calculation.

D. Discussion

In the above numerical examples, our algorithm gives
“reasonable” results on the determination of control modes
of robot fingers. Therefore, we can say that our strategy—
selecting a combination of finger control modes that
achieves the maximum manipulation stability without ex-
cessive internal force—is effective in graspless manipu-
lation. Our strategy uses position control preferably and
uses force control as little as possible. This property is also
desirable in terms of the ease of manipulation execution
by real robot fingers.

We can make some variations of our algorithm accord-
ing to purposes. For example, as found in power grasp
optimization [14], we can use the stability measure not
as the objective function but as a constraint. In this case,
a different objective function (e.g., sum of finger forces)
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is optimized, and graspless manipulation with at least a
specified stability value can be obtained.

V. CONCLUSION

We developed a method to determine control modes
of multiple robot fingers for graspless manipulation. The
method can automatically choose whether each robot
finger should be position-controlled or force-controlled.
Moreover, desired normal forces can be also determined
for fingers to be force-controlled.

The basic strategy of the determination algorithm is to
select a combination of finger control modes that achieves
the maximum manipulation stability, as far as excessive
internal force could not be generated. The algorithm
is mainly composed of a series of linear programming
problems. The proposed method was applied to some
numerical examples of typical graspless manipulation such
as sliding and tumbling, where control modes of robot
fingers were determined successfully.

We presented a method to determine finger control
modes for manipulation but note that it does not automat-
ically mean switching of finger control modes during ma-
nipulation. Avoiding frequent switching of control modes
is very important but it is another problem.

Now we are trying to incorporate the presented algo-
rithm into our planner of graspless manipulation [15] so
that more practical manipulation plans for spatial cases
can be generated.
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