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Abstract

In this paper, we propose a simple teaching method
for industrial robots by human demonstration. The
method can be divided into two parts: the teaching
phase and the planning phase. In the teaching phase,
a human operator demonstrates a manipulation of
an object, and two cameras recognize the path of the
object by observing markers attached on the object.
In the planning phase, a motion planner generates a
sequence of robot operations to play back the demon-
strated path by pick-and-place and pushing. The pro-
posed method incorporates automated camera calibra-
tion required for human demonstration, which en-
ables labor-saving teaching and compensates the ab-
solute positional error of industrial robots.

In the experiments, each of demonstrated manipula-
tions was reproduced successfully as a combination
of pick-and-place and pushing by one or two robot
manipulators.

1 Introduction

The cost of robot teaching is one of the biggest issues
that prevent the spread of robot utilization. Robot
programming is not easy for novice operators and the
cost of training them is often unaffordable especially
for small companies. Thus low-cost and labor-saving
robot teaching is greatly to be desired.

Automated robot motion planning by computer al-
gorithms is a traditional approach for this problem.
There exist a lot of algorithms for robot motion plan-
ning [1, 2]. However, they are uncommonly used in
industrial applications. That is because additional
procedures are necessary for the execution of planned
motion; most of motion planning algorithms require
a detailed model of the workspace of robots, and ab-
solute position of real robots must be calibrated be-
fore the execution.

In recent years, the “teaching-by-showing” (or
“programming-by-demonstration”) approach has

been widely studied. Some researchers adopted in-
tensive image-processing to acquire task knowledge
from human demonstration. For example, simple as-
sembly tasks [3] and pick-and-place [4] were achieved.
Ogata and Takahashi constructed a virtual environ-
ment where a human operator demonstrates assem-
bly operations with virtual reality tools such as a
data glove [5]. The demonstration is interpreted and
replicated by a robot in a real environment. 3D posi-
tion sensors are also used in some robot programming
systems by human demonstration [6, 7]. Ogawara et
al. used intensive image-processing and data gloves
to analyze human demonstration [8].

Though these achievements are very important, the
“teaching-by-showing” approach is still far from in-
dustrial applications. There are various reasons:

• Preparation for human demonstration is a hard
task; much work such as modeling of the object
and the environment is required even if teaching
itself is easy.

• Special facilities for human demonstration (e.g.
data gloves, position sensors, etc.) are expensive
and/or of insufficient accuracy.

• Calibration of real robots is still necessary.

In this paper, we develop a simple “teaching-by-
showing” method for grasp/graspless manipulation
by conventional industrial robots; that is, pick-and-
place and pushing operation [9] of robot manipula-
tors is generated from human demonstration. We at-
tach markers on manipulated objects to make it easy
to recognize human demonstration. The paths of the
objects are observed by two cameras and reproduced
using pick-and-place and pushing by robots (Fig-
ure 1). We also attach markers on the end-effectors of
the robots to realize automated calibration required
for human demonstration.

2 Outline of Teaching

In this paper, we set the following assumptions:
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Figure 1: Demonstration and Playback of Manipu-
lation

• We use conventional position-controlled robots
equipped with parallel-jaw grippers.

• Each robot can perform pick-and-place and
pushing operation of an object with its gripper.

• Manipulation tasks are executed on and above
a flat table. Information on the workspace (e.g.,
obstacles) is given indirectly by human demon-
stration.

• The shape of the manipulated object and posi-
tions of markers on it in the object coordinate
system are known.

Our teaching method consists of the following two
phases:

1. Teaching Phase

• Camera calibration for human demonstra-
tion using robot coordinates

• Teaching of an object path by human
demonstration

2. Planning Phase

• Segmentation of the object path
• Planning of robot motion for the path repli-
cation

We describe our method in detail in the following
sections.

3 Teaching of Manipulation

3.1 Teaching of Object Path by Human
Demonstration

In our method, a human operator manipulates an
object from an initial position to a goal position. The
path of the object (position and orientation) in the
demonstration is used as teaching data. We adopt
the DLT (Direct Linear Transformation) method [10]
for obtaining 3D position data of markers attached

to the object; position/orientation data of the object
are calculated from the markers’ positions.

The DLT equation is:

[
ui

vi

]
=

[
bi,1x+bi,2y+bi,3z+bi,4
bi,5x+bi,6y+bi,7z+1

bi,8x+bi,9y+bi,10z+bi,11
bi,5x+bi,6y+bi,7z+1

]
, (1)

where [ui, vi]T is the position of a marker in the im-
age plane of i-th camera (i = 1, 2), x = [x, y, z]T is
the 3D position of the marker, and bi,j are unknown
constants (DLT parameters).

We rewrite eq. (1) as

u = f(x), (2)

where u = [u1, v1, u2, v2]T . Once all the DLT pa-
rameters (bi,j) are identified by calibration, we can
perform 3D reconstruction as:

x = f−1(u) (3)

by the linear least-squares method.

Observation of three markers attached on the object
enables us to obtain position/orientation of the ob-
ject.

3.2 Calibration for Human Demonstration

The DLT parameters bi,j must be identified through
calibration before 3D reconstruction by eq. (3). Easy
calibration is indispensable to easy robot teaching;
therefore we identify the DLT parameters automat-
ically by observing a marker attached on the end-
effector of each robot. (Figure 2).

Each robot can calculate the position of the marker
from its own internal sensors (encoders). Thus we
can obtain 3D position of the marker in the reference
frame of the robot, x, and its camera coordinates,
u. By moving the robot (typically, to point at an
n × n × n grid), we have multiple pairs (xk, uk).
The DLT parameters can be calculated by the linear
least-squares method from (xk, uk) to minimize the
following residual:∑

k

‖xk − f−1(uk)‖2. (4)

After the calibration, we can obtain the path of the
object in human demonstration represented in the
reference frame of the robot.

Note the following features of our calibration
method:

• Positions of the cameras can be unknown, thus
a human operator can place them with no spe-
cial care just before the manipulation demon-
stration.
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Figure 2: Calibration for Human Demonstration
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Figure 3: Calibration for Human Demonstration
(in a Multi-Robot System)

• Robot motion required for the calibration can
be automated, therefore all the human operator
has to do is to place the cameras where they can
observe the markers.

• Calibration is achieved using robot coordinates
and consequently absolute positional error of the
robots can be canceled.

• As we increase the number of the measurement
points of the marker, the calibration accuracy
is improved (and the calibration time is pro-
longed).

Calibration for multi-robot systems can be per-
formed in a similar way (Figure 3). Homogeneous
transformation matrices between robot coordinate
systems are obtained in addition to the DLT param-
eters. Detailed description is found in [11].

4 Planning of Robot Motion for Manip-
ulation Playback

After a path of the object is given in the teaching
phase, robot motion should be generated to play back
the path. First, we segment the path as a sequence
of constrained and unconstrained motions. Then a
planning algorithm generates robots’ motion to re-
produce each of segmented motions.

4.1 Segmentation of Object Path

In this research, we use conventional position-
controlled robots. That is, the robots cannot per-
form compliant motions in contact tasks. Therefore,
constrained contact motions of the object in demon-
stration have to be reproduced by pushing—in other
words, we deal with only contact motions that can
be performed by pushing. On the other hand, un-
constrained motions can be reproduced by pick-and-
place. Thus we segment the path of the object into
constrained/unconstrained motions.

To detect constrained motions in the demonstrated
path, we adopt the 3D Hough transformation. If
the Hough transformation finds that a sequence of
the path data lies on a plane, we identify the plane
exactly by a least-squares method. If the residual is
smaller than a threshold, we consider the sequence
as a constrained motion.

4.2 Motion Generation for Manipulation

After the segmentation of the demonstrated path, we
run a robot motion planner to reproduce each of the
segments. We implemented a naive motion planning
algorithm, which is sufficient for our experiments.
There exist, however, a lot of elaborate motion plan-
ners (for example, [12]). Our motion planner can be
replaced by a different one if necessary.

Planning of the following robot motions is required
here:

1. Simple operation

• Planning of pick-and-place
• Planning of pushing

2. Transition of operation

• Planning of transit motion from pick-and-
place to pushing

• Planning of transit motion from pushing to
pick-and-place

3. Subdivision of operation

• Planning of regrasping in single operation

Moreover, planning of operation assignment to a
proper robot is necessary for multi-robot systems.
Hereafter, each of them are described briefly.

Planning of Simple Operation. Basically, each
segment of unconstrained motions is simply played
back by pick-and-place operation. A robot grasps
the object and moves it to the end of the segment.

On the other hand, each segment of constrained mo-
tions is usually reproduced by pushing operation.
The robot approaches to the object from behind and
pushes it to the end of the segment with its gripper.
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Figure 4: Need for Regrasping in Single Operation

Planning of Transition of Operation. The
robot has to place its gripper to a suitable posi-
tion for the next operation at a switching point
between constrained/unconstrained motions. Such
transit motions must be generated by the motion
planner. In the case of switching from pick-and-place
to pushing, the robot ungrasps the object and moves
its gripper behind the object. On the other hand, in
the case of switching from pushing to pick-and-place,
the robot approaches to the object and grasps it.

Planning of Regrasping in Single Operation.
The robot may have to regrasp the object in the mid-
dle of a single operation. For example, its gripper
may hit against the table in a sequence of pick-and-
place but for regrasping (Figure 4). In such cases,
regrasping motion should be generated in an uncon-
strained motion by the motion planner.

Planning of Operation Assignment. In a pro-
cess of motion planning, a planned path of the robot
gripper is discretized into a series of points, where
joint angles for a robot are calculated by inverse kine-
matics. If the joint angles are infeasible, the robot
cannot complete the operation because of the limita-
tion of its movable area. We check whether another
robot can take over the operation when we use multi-
ple robots. Thus the rest of the operation is assigned
to a proper robot, if any.

Integration of all of the motion planning procedures
described above enables us to generate robots’ mo-
tion required to play back the demonstrated manip-
ulation.

5 Manipulation Experiments

5.1 Experimental Setup

Our experimental setup is illustrated in Figure 5. We
use two 6-degree-of-freedom robots, “Js-2,” which
are position-controlled at 16 [ms] intervals by Linux
PCs. We attach an LED marker on each hand of the
robots. For the DLT method, a 3D motion measure-
ment system are installed. It consists of two CCD
cameras with 640×416 resolution and an arithmetic
unit for the DLT, “VideoTracker G280” by OKK Inc.
In our experiments, the accuracy of 3D reconstruc-
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Figure 5: Experimental Setup

Figure 6: Human Demonstration in an
Experiment
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Figure 7: Demonstrated Path in an Experiment

tion by the DLT is about 1[mm]. Note that we can
replace the arithmetic unit by a PC equipped with a
image processing board. We use cuboid-shaped car-
tons as manipulated objects. Three LED markers
are attached on them.

5.2 Manipulation by a Single Robot

Manipulation consists of constrained and uncon-
strained motions was demonstrated (Figure 6). In
this case, the demonstrated path of the object was



(1) start (0[s]) (2) pushing (3[s])

(3) transit (12[s]) (4) grasp (28[s])

(5) pick-and-place (34[s]) (6) ungrasp (39[s])

(7) transit (54[s]) (8) pushing (64[s])

(9) finish (66[s])

Figure 8: Manipulation Playback by Pick-and-Place
and Pushing

segmented into three parts: two constrained motions
and one unconstrained motion (Figure 7). The path
was successfully played back by a single robot, using
pick-and-place and pushing (Figure 8).

We demonstrated another manipulation consists of
a single pick-and-place operation. In this case, our
motion planner detected the danger of collision of the
robot hand against the table. Therefore the robot
played back the path of the object by pick-and-place
with regrasping (Figure 9).

In the first case, the total time required for robot
teaching was about 100[s]: 60[s] for calibration (with
eight measurement points), 20[s] for human demon-
stration, and 20[s] for path segmentation (by a PC
with Pentium III–600MHz). Time for motion plan-
ning was negligible.

5.3 Manipulation by Dual Robots

Another manipulation consists of constrained and
unconstrained motions was demonstrated for a dual

(1) start (0[s]) (2) grasp (5[s])

(3) pick-and-place (9[s]) (4) ungrasp (20[s])

(5) regrasping (40[s]) (6) grasp (67[s])

(7) pick-and-place (75[s]) (8) finish (86[s])

Figure 9: Manipulation Playback with Regrasping

robot system. The demonstrated path of the object
was also successfully played back by two robots, us-
ing pick-and-place and pushing (Figure 10).

In this case, the total time required for robot teach-
ing was about 160[s]: 120[s] for calibration (with
eight measurement points for each robot), 20[s] for
human demonstration, and 20[s] for path segmenta-
tion.

6 Conclusion

In this paper, we developed a simple teaching method
for industrial robots by human demonstration. The
method consists of two parts: the teaching phase and
the planning phase. In the teaching phase, a human
operator demonstrates a manipulation of an object,
and the path of the object is obtained by observing
markers attached on the object with two cameras. In
the planning phase, a sequence of robot motions is
generated to reproduce the demonstrated path using
pick-and-place and pushing.

Features of our teaching method can be summarized
as follows:

• Use of markers reduces total cost of robot teach-



(1) start (0[s]) (2) pushing (9[s])

(3) pick-and-place (148[s]) (4) finish (154[s])

Figure 10: Manipulation Playback by Dual Robots

ing including the labor required to set up the
teaching system.

• Calibration for human demonstration is incor-
porated in the method and most of the cali-
bration procedures can be automated. After
the calibration, robots can recognize demon-
strated paths of objects in their own reference
frames. That means absolute positional error of
the robots can be canceled to a certain extent.

• Special knowledge on the robot system (for ex-
ample, movable area of each robot) is not very
necessary for human demonstrators. Even if the
system consists of multiple robots, the demon-
strators only have to show the desired path of
the object.

In the experiments, demonstrated manipulations
were successfully reproduced using pick-and-place
and pushing operation by robot manipulator(s).

The proposed teaching method can be used to sup-
port “Plug & Produce” [13], which is a function
of manufacturing systems to realize their reconfig-
urability. Low-cost robot teaching will enhance the
reconfigurability of manufacturing systems, because
robots can be easily installed and joined in work im-
mediately.

Occlusion of the markers in human demonstration is
the biggest limitation in our current implementation.
Future work should address the use of four or more
markers and the estimation of positions of occluded
markers.
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