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Abstract— In this paper, we analyze indeterminate contact
forces in robotic grasping and contact tasks. Previous studies by
Omata and Nagata showed that there is a constraint on static
friction forces, which is derived from contact kinematics, in
rigid-body power grasps. The set of possible contact forces can
be calculated using the constraint. This approach can be applied
to not only mechanical analysis of power grasps but also that
of other robotic contact tasks. However, there are some cases
where Omata and Nagata’s formulation generates paradoxical
results on contact forces. In this paper, we investigate this
problem and propose a modified method to calculate the set
of possible indeterminate contact forces. We also study how to
reduce the computation.

I. INTRODUCTION

Mechanics of contact forces plays an important role in
various fields such as robotic manipulation, assembly and fix-
turing. In rigid-body systems, contact forces can be indeter-
minate especially when there are many contact points. Omata
and Nagata analyzed such indeterminate contact forces in
rigid-body power grasps in detail and showed that some
combinations of static friction forces cannot exist because of
their incompatibility with a rigid body motion [1] [2] (Fig. 1).
Their idea can be applied not only to mechanical analysis of
power grasps but also that of various robotic manipulation
[3] [4].

However, in some cases, Omata and Nagata’s approach
produces paradoxical results on the contact forces (see
examples in Section III-B). In this paper, we describe the
problem in their approach and propose an improved method
to calculate the set of possible indeterminate contact forces
in robotic grasping and contact tasks. The key idea was
originally presented in our previous papers [3] [4], but
they covered only robotic contact tasks such as graspless
manipulation [5], and the discussion was limited to specific
issues such as evaluation of manipulation robustness and

virtual sliding

static friction

(a) valid friction forces (b) invalid friction forces

Fig. 1. Valid and invalid friction forces
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internal force problems. This paper deals with not only
contact tasks but also grasping, and gives detailed discussion
on how to calculate the set of possible indeterminate forces.
Our new method requires combinatorial calculation, so we
also study how to reduce the computation.

II. PROBLEM FORMULATION

A. Assumptions and Notation

Let us consider N -fingered grasping. For convenience, we
regard all the immobile links, palms and the environment as
a part of one virtual finger. Thus, for example, N = 1 in the
cases as shown in Fig. 1.

In this paper, we make the following assumptions:
• The object, bodies of robot fingers, and the environment

are rigid.
• The system is static.
• All the contacts can be approximated by finite number

of point contacts.
• Contact normals can be defined at all the contact points.
• Coulomb friction exist at the contact points.
• Each friction cone can be approximated by a polyhedral

convex cone [6] with r edge vectors.
The notation used in this paper is as follows:
• Mi: number of contact points on the i-th finger.
• M :=

∑N
i=1 Mi: total number of contact points.

• Li: number of joints of the i-th finger.
• L :=

∑N
i=1 Li: total number of joints.

• Pij : the j-th contact point on the i-th finger.
• Pl: the l-th contact point; we put serial number on Pij

such that l =
∑i−1

n=1 Ln + j.
• pl ∈ �3: the position vector of Pl.
• tl1, tl2 ∈ �3: unit tangent vectors at Pl defined such

that tT
l1tl2 = 0.

• clm ∈ �3: the m-th unit edge vector of a polyhedral
convex cone that approximates the friction cone at Pl.

• fl ∈ �3: contact force at Pl.
• f := [fT

1 , . . . , fT
M ]T ∈ �3M .

• τij : joint torque of the j-th joint of the i-th finger.
• τi := [τi1, . . . , τiLi ]T ∈ �Li .
• τ := [τT

1 , . . . , τT
N ]T ∈ �L.

• θij : joint variable of the j-th joint of the i-th finger.
• θi := [θi1, . . . , θiLi ]

T ∈ �Li .
• θ := [θT

1 , . . . , θT
N ]T ∈ �L.

• v0 ∈ �3: virtual translation velocity of the object.
• ω0 ∈ �3: virtual angular velocity of the object.
• V := [vT

0 , ωT
0 ]T ∈ �6.

• wext ∈ �6: external wrench applied to the object.
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Although the above notation is for spatial cases, we use that
with reduced dimensions for planar cases.

B. Mechanical Model

The static equilibrium equation of the object can be written
as follows:

Wf = −wext, (1)

where

W :=
[

I3 . . . I3

p1 × I3 . . . pM × I3

]
∈ �6×3M ; (2)

In is the n × n identity matrix; pl × I3 ∈ �3×3 is a skew-
symmetric matrix defined such that (pl × I3)x ≡ pl × x.
The relationship between the joint torques and the contact
forces are:

JT f = τ , (3)

where

J := diag(J1, . . . , JN ) ∈ �3M×L (4)

Ji :=

⎡
⎢⎣

Ji1

...
JiMi

⎤
⎥⎦ ∈ �3Mi×Li ; (5)

Jij ∈ �3×Li is the Jacobian matrix between the position of
Pij and the joints of the i-th finger.

Equation (1) and (3) can be combined as follows:

AT f = w, (6)

where

A :=
[
W T J

] ∈ �3M×(6+L) (7)

w := [−wT
ext, τT ]T ∈ �6+L (8)

When w ∈ ImAT , we can obtain the contact forces in the
following form by solving (6):

f = h0 + h, h ∈ KerAT , (9)

where h0 is a particular solution and h is a homogeneous
solution. When KerAT �= {0}, the contact forces are
indeterminate.

The contact forces must also satisfy Coulomb’s law. From
the assumption of polyhedral convex friction cones, contact
force at Pl can be expressed as:

fl = Clkl, (10)

where

Cl := [cl1 . . . clr] ∈ �3×r (11)

kl := [kl1, . . . , klr]T ∈ �r (12)
klm ≥ 0 (m = 1, . . . , r). (13)

Now all the contact forces can be represented as follows:

f = Ck (k ≥ 0), (14)

where

C := diag(C1, . . . , CM ) ∈ �3M×rM (15)

k :=
[
kT

1 , . . . , kT
M

]T ∈ �rM . (16)

Let us define the following matrices:

Tl :=
[
tl1 tl2

] ∈ �3×2 (17)

T := diag(T1, . . . , TM ) ∈ �3M×2M . (18)

Then the static friction forces, ft ∈ �2M , can be expressed
by:

ft = T T f . (19)

C. Goal of This Paper

Omata and Nagata derived an additional constraint on
static friction forces, ft, from contact kinematics [1] [2].
However, their method sometimes produces unreasonable
results, which are presented in the next section. The goal
of this paper is to modify the constraint so that such
unreasonable results are excluded. Moreover, we also present
a procedure to calculate the set of possible indeterminate
contact forces based on the modified constraint.

III. OMATA’S FORMULATION OF CONSTRAINT ON
STATIC FRICTION FORCES

A. Virtual Sliding for Deriving Constraint on Friction Forces

Suppose a virtual instantaneous motion of the object
and the robot fingers that causes virtual sliding at some
contact points. Note that this virtual sliding is required only
to derive the constraint on static friction forces and must
be distinguished from actual sliding, which corresponds to
kinetic friction forces.

Omata and Nagata claimed that virtual sliding should
satisfy the following equation [1] [2]:

A

[
V

−θ̇

]
= T Ẏ , (20)

where

Ẏ = [Ẏ T
1 , . . . , Ẏ T

M ]T ∈ �2M (21)

Ẏl = [Ẏl1, Ẏl2]T ∈ �2; (22)

Ẏl1 and Ẏl2 are the elements of the virtual sliding velocity
vector at Pl in the direction of tl1 and tl2, respectively. The
valid virtual sliding must satisfy (20); in other words, Ẏ is
valid when there exist V and θ̇ that satisfy (20).

Omata and Nagata’s idea can be summarized as follows:
1) The (virtual) sliding is constrained by contact kinemat-

ics, (20).
2) Static friction forces act only in the opposite direction

of the trend of (virtual) sliding to prevent it.
3) Therefore, static friction forces are also constrained.

In the case of Fig. 1, the validity of friction forces can be
judged by the above scheme. The virtual slidings as shown in
the left of Fig. 1 satisfy (20) and therefore the corresponding
static friction forces are valid. On the other hand, the virtual
slidings as shown in the right of Fig. 1 do not satisfy (20) and
therefore the corresponding static friction forces are invalid.

Omata and Nagata’s formulation imposes a “global” con-
straint on friction forces; in other words, their constraint is
on the combination of the friction forces. On the other hand,
friction models such as Coulomb’s law impose only “local”
constraints on each of the friction forces.

1571



x
y

finger 1 finger 2

P1 P2

(a) Grasp by two fingers

P1 P2

(b) Valid friction forces

Fig. 2. Example: grasp with two contact points

x
y

finger 1 finger 2

P1 P2

P3

(a) Grasp with an additional contact

P1 P2

P3

(b) Invalid friction forces?

Fig. 3. Example: Grasp with three contact points

B. Paradoxical Results

Let us consider a two-fingered grasp as shown in Fig. 2(a).
In this case, when an external force (e.g. gravity) is applied to
the object vertically downward, static friction forces shown
in Fig. 2(b) can be generated to prevent falling down of
the object. Of course, they are valid in Omata and Nagata’s
formulation.

Then, let us consider a similar grasp as shown in Fig. 3(a).
This grasp has an additional contact between the object and
the “palm” (P3) in comparison to Fig. 2(a). In this case,
when an external force is applied to the object vertically
downward, static friction forces shown in Fig. 3(b) could
also be generated. However, these friction forces are invalid
in Omata and Nagata’s formulation; the virtual object motion
vertically downward does not satisfy (20), because such a
motion will break the contact P3.

Intuitively, when a contact point is added to a robotic
grasp, the robustness of the grasp should be larger than
or equal to the original grasp. However, in Omata and
Nagata’s formulation, the additional contact may invalidate
some friction forces and make the grasp less robust—this is
paradoxical.

Suppose a similar case, as shown in Fig. 4(a). In this case,
a rectangular object is just on a plane, not grasped. When
an external force is applied downward right to the object,
static friction forces shown in Fig. 4(b) can be generated to
prevent horizontal sliding of the object. They are valid in
Omata and Nagata’s formulation.

Then, let us add a new contact point, P3, as shown in
Fig. 5(a). In this case, when an external force is applied to
the object downward right, static friction forces shown in
Fig. 5(b) could also be generated. However, these friction
forces are invalid in Omata and Nagata’s formulation; the
virtual object motion horizontally to the right does not satisfy
(20), because such a motion will break the contact P3. This
is another paradoxical result.

Note that the occurrence of such paradoxical results is not
limited to the above two simple examples.

x
y

P1 P2

(a) Object on a plane

P1 P2

(b) Valid friction forces

Fig. 4. Example: Non-grasped object with two point contacts

P1 P2

x
y

P3

(a) Object with an additional contact

P1 P2

P3

(b) Invalid friction forces?

Fig. 5. Example: Non-grasped object on a plane with three contact points

IV. A NEW FORMULATION OF CONSTRAINT ON STATIC
FRICTION FORCES

A. Constraint on Virtual Sliding

As shown in the previous section, Omata and Nagata’s
formulation sometimes excludes valid contact forces. Why
are such results generated? We think that the problem is
in (20); this is a constraint on actual instantaneous sliding.
However, we now consider virtual sliding to derive the
constraint on static friction forces. Because (20) is too
strict for virtual sliding, Omata and Nagata’s formulation
sometimes excludes valid virtual slidings and corresponding
valid friction forces.

Thus we introduce a new relaxed constraint on virtual
sliding instead of (20) as follows:

BA

[
V

−θ̇

]
= T Ẏ , (23)

where B is a selection matrix defined as:

B := diag(b1I3, . . . , bMI3) ∈ �3M×3M ; (24)

bl =

{
1 when Pl is in virtual sliding,
0 otherwise.

(25)

We consider all the combinations of bl except for a trivial
case where B = O; that is, there are (2M −1) combinations.
A virtual sliding is valid when (23) is satisfied at least for
one combination of bl; in other words, Ẏ is valid when there
exist V , θ̇ and B that satisfy (23).

Then, static friction forces can be generated only in the
directions to prevent such valid virtual slidings. When Pl

is not selected by B (i.e., bl = 0), no friction forces are
generated at Pl as for the corresponding virtual sliding. As
a result, a set of valid static friction forces can be calculated
for each combination of bl. The union of each set is the total
set of valid static friction forces.

Using this new formulation, the unreasonable results
shown in Section III-B can be excluded. The static friction
forces shown in Fig. 3(b) are valid in our new formulation
because the corresponding virtual object motion (vertically
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downward) satisfies (23) when b1 = 1, b2 = 1 and b3 = 0.
Similarly, the static friction forces shown in Fig. 5(b) are
also valid in our new formulation because the corresponding
virtual object motion (horizontally to the right) satisfies (23)
when b1 = 1, b2 = 1 and b3 = 0.

B. Calculating Possible Contact Forces Based on New For-
mulation

Let us investigate the mechanics of the system for a
specific selection matrix, B. As stated above, friction forces
cannot exist at the contact points that are not selected by B.
This constraint can be written as follows:

T T (I3M − B)f = 0. (26)

The constraint on static friction, which can be derived
from that on virtual sliding (23), is very complex. Therefore
we adopt a divide-and-conquer approach focusing on the
possible signs of the elements of Ẏ , as Omata did in [2].

We introduce the following matrix:

S := diag(s11, s12, . . . , sM1, sM2) ∈ �2M×2M , (27)

where

slm :=

⎧⎪⎨
⎪⎩

+1 when bl = 1 and Ẏlm > 0,
−1 when bl = 1 and Ẏlm < 0,
0 when bl = 0.

(28)

There are 22n patterns for S at most when B selects n virtual
sliding points. Then we have:

Ẏ = Sq, (29)

where q(∈ �2M ) > 0.
The existence of q that satisfies (23) and (29) for a subcase

specified by S can be tested by solving the following linear
programming problem:

maximize
q,V ,θ̇

1T q

subject to

⎧⎪⎨
⎪⎩

BA

[
V

−θ̇

]
= TSq

q ≥ 1,

(30)

where 1 = [1, . . . , 1]T ∈ �2M . When the objective function
diverges to infinity, there exist q(> 0) that satisfies (23) and
(29). In that case, the constraint on static friction forces can
be written in the following linear form:

ST T f ≤ 0. (31)

Inequality (31) means that static friction forces can be
applied only in the opposite directions of virtual sliding.

From (6), (14), (26) and (31), we can obtain a set of
possible contact forces for a subcase specified by S by
solving the following equations and inequalities:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
AT Ck = w

T T (I3M − B)Ck = 0
ST T Ck ≤ 0
k ≥ 0.

(32)

The set of possible k forms a convex hyperpolyhedron
in rM -dimensional space for a subcase specified by B
and S. The corresponding set of possible contact forces,
f = Ck, also forms a convex hyperpolyhedron in 3M -
dimensional space. The union of each hyperpolyhedron for
all the combinations of B and S is the total set of possible
contact forces, which is not necessarily convex.

Now we can present a complete procedure for the calcu-
lation of the total set of possible contact forces as follows:

Step 1. Enumerate all the combinations of virtual
sliding/non-sliding contact points (namely, enumerate
selection matrices B).

Step 2. Enumerate all the possible S for each B by solving
the problem (30).

Step 3. For each combination of B and S, solve the
problem (32).

Step 4. Obtain the total set of possible contact forces as
the union of the results of Step 3.

Under our new formulation, the above procedure enables
us to obtain more accurate results on the set of possible
indeterminate contact forces than previous studies [1] [2].

V. REDUCTION OF COMPUTATION

If we implement the above procedure straightforwardly,
problem (32) must be solved 5M − 1

(
=

∑M
n=1

(
M
n

)
22n

)
times at most. The computation can be very time-consuming
when M is large. Thus we investigate the way to reduce the
computation.

A. Skipping Impossible Virtual Slidings

Some of 5M − 1 patterns can be skipped by considering
a property of problem (30). The problem (30) for a combi-
nation of B and S is sometimes a relaxation problem for
other combinations. Therefore in such cases, if a combination
of B and S is found impossible, we can omit some other
combinations immediately. This technique was used also in
[3] and [4].

B. Skipping Unnecessary Virtual Slidings

Let us consider a case where a fingertip link of a robot
finger has only one contact point. Without loss of generality,
we assume that this contact point is PM (= PNMN ). We
denote the column vectors of JNMN by:

JNMN =
[
jNMN 1 . . . jNMN LN−1 jNMN LN

]
∈ �3×LN , (33)

and define the following matrix:

Z :=
[
TM jNMN LN

] ∈ �3×3. (34)
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We also use the following notation:

W =
[
W1 . . . WM−1 WM

]
=

[
W− WM

]
Wi =

[
I3

pi × I3

]
∈ �6×3

J =
[
J−
J∗

]
∈ �3M×L

J− ∈ �3(M−1)×L

J∗ =
[
O JNMN

] ∈ �3×L

T = diag(T1, . . . , TM−1, TM ) = diag(T−, TM )

Ẏ = [Ẏ T
1 , . . . , Ẏ T

M−1, Ẏ
T

M ]T = [Ẏ T
− , Ẏ T

M ]T .

The selection matrix B when bM = 1 is given by:

B = diag(B−, I3).

In this case, (23) can be rewritten as follows:[
B− O
O I3

] [
W T− J−
W T

M J∗

] [
V

−θ̇

]
=

[
T− O
O TM

] [
Ẏ−
ẎM

]
(35)

Similarly, selection matrix B when bM = 0 is given by:

B = diag(B−, O3),

where On is the n×n zero matrix. In this case, (23) can be
rewritten as follows:[

B− O
O O3

] [
W T

− J−
W T

M J∗

] [
V

−θ̇

]
=

[
T− O
O TM

] [
Ẏ−
ẎM

]

∴ B−
[
W T

− J−
] [

V

−θ̇

]
= T−Ẏ−. (36)

Now we have the following theorem.
Theorem 1: If Z is nonsingular, for any Ẏ− that satisfies

(36), there exist Ẏ = [Ẏ T
− , Ẏ T

M ]T that satisfies (35).
Proof: Equation (35) can be transformed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
B−

[
W T

− J−
] [

V

−θ̇

]
= T−Ẏ−

[
W T

M J∗
] [

V

−θ̇

]
= TM ẎM

∴

⎧⎪⎪⎨
⎪⎪⎩

B−
[
W T− J−

] [
V

−θ̇

]
= T−Ẏ− (37a)

[
W T

M JNMN

] [
V

−θ̇N

]
= TM ẎM . (37b)

As shown above, (37a) and (36) are identical equations.
Because of the assumption that the fingertip link of

the N -th finger has only one point contact, θ̇NLN does
not affect the positions of contact points except for
PNMN . Accordingly, θ̇NLN does not appear in (36) (and
of course, in (37a)); that is, the solution of (36) is
specified by (V , θ̇1, . . . , θ̇N−1, θ̇N−, Ẏ−), where θ̇N− :=
[θ̇N1, . . . , θ̇NLN−1]T .

object

Fig. 6. Examples where Z is singular

From (37b), we have:

[
W T

M JNMN

]⎡
⎣ V

−θ̇N−
−θ̇NLN

⎤
⎦ = TM ẎM .

∴
[
TM jNMN LN

] [
ẎM

θ̇NLN

]

=
[
W T

M jNMN1 . . . jNMN LN−1

] [
V

−θ̇N−

]

∴ Z

[
ẎM

θ̇NLN

]
=

[
W T

M jNMN1 . . . jNMN LN−1

] [
V

−θ̇N−

]
.

Therefore, if Z is nonsingular, we can find ẎM and θ̇NLN

that satisfy (37b) for solution of (36). That is, for any Ẏ−
that satisfies (36), there exist Ẏ = [Ẏ T− , Ẏ T

M ]T that satisfies
(35).

Theorem 1 enables us to skip combinations of B whose
bM = 0 in the calculation of possible contact forces when
Z is nonsingular. In other words, nonsingularity of Z is a
sufficient condition to skip some unnecessary virtual slidings.

We can reduce the computation when this sufficient con-
dition holds. For example, if each of fingertip links of all the
fingers has only one contact point and Z is nonsingular for
each, the number of the combinations of B to be considered
is reduced from (2M − 1) to 2M−N . Z is singular only in
special cases as shown in Fig. 6.

VI. NUMERICAL EXAMPLES

We implemented the procedure presented in Section IV-
B for calculating the set of possible indeterminate contact
forces as a program on Linux. The program uses cdd [7] for
solving (30) and (32).

Because of the page limitation, we present a few simple
numerical examples. The computation times for the examples
are measured on a PC with Pentium4–3.2GHz. The friction
coefficient is set to 0.5 in all the contact points.

A. Example: Planar Grasp

Let us consider the case of Fig. 3. The parameters are as
follows:

wext = [0, −1, 0]T , τ = [1, −1]T

p1 =
[−0.1

0

]
, p2 =

[
0.1
0

]
, p3 =

[
0

0.1

]
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J =

⎡
⎣ 0.1 0

0 0
0 0.1
0 0
0 0
0 0

⎤
⎦ , T =

⎡
⎣ 0 0 0−1 0 0

0 0 0
0 1 0
0 0 −1
0 0 0

⎤
⎦ .

In this case, Theorem 1 can be applied to P1 and P2, and Z
is nonsingular in both cases. Therefore, we should consider
only the following two patterns for B:

B = diag(I2, I2, I2), diag(I2, I2, O2).

In fact, the possible contact forces that satisfy (23), (29) and
(32) can be calculated only when B = diag(I2, I2, O2) and
S = diag(1,−1, 0). The total set of possible indeterminate
contact forces, F , is as follows:

F = {f |f = kAfA + kBfB , kA + kB = 1, kA,B ≥ 0} ,

where

fA = [10, 0.5, −10, 0.5, 0, 0]T

fB = [10, 5, −10, 5, 0, −9]T .

This grasp is hyperstatic [8]. The computation time for this
case is 0.004 and 0.007 seconds with and without Theorem 1,
respectively.

B. Example: Non-grasped Object
The next example is the case of Fig. 5. In this case, we

do not have to consider J and τ because there are no robot
joints, and Theorem 1 is not applicable. The parameters are
as follows:

wext = [0.2, −1, 0]T

p1 =
[−0.1
−0.1

]
, p2 =

[
0.1
−0.1

]
, p3 =

[−0.1
0

]

T =

⎡
⎣ 1 0 0

0 0 0
0 1 0
0 0 0
0 0 0
0 0 −1

⎤
⎦ .

In this case, the possible contact forces that satisfy (23), (29)
and (32) can be calculated in the following subcases:

B = diag(I2, O2, O2), S = diag(1, 0, 0)
B = diag(O2, I2, O2), S = diag(0, 1, 0)
B = diag(I2, I2, O2), S = diag(1, 1, 0)
B = diag(O2, I2, I2), S = diag(0, 1, 1).

The total set of possible indeterminate contact forces, F , is
expressed by eliminating overlap as follows:

F = F1 ∪ F2

F1 =

{
f

∣∣∣∣ f =
3∑

i=1

kBifBi,

3∑
i=1

kBi = 1, kBi ≥ 0

}

F2 =

⎧⎨
⎩f

∣∣∣∣f =
∑

i=1,2,4

kBifBi,
∑

i=1,2,4

kBi = 1, kBi ≥ 0

⎫⎬
⎭

fB1 = [0, 0.4, −0.2, 0.6, 0, 0]T

fB2 = [0, 0.333, −0.333, 0.667, 0.133, 0]T

fB3 = [−0.2, 0.4, 0, 0.6, 0, 0]T

fB4 = [0, 0.267, −0.333, 0.667, 0.133, 0.067]T .

The computation time for this case is 0.007 seconds.

Fig. 7. A triangular prism supported by five contacts

C. Example: A Spatial Case

Our method was successfully applied to spatial cases. As
an example, let us introduce a case of a triangular prism
supported by five contact points as shown in Fig. 7. In this
case, the total set of possible contact forces was calculated
as a union of 80 convex hyperpolyhedra. The computation
time was 9.1 seconds when r = 48.

VII. CONCLUSION

In this paper, we investigated the indeterminate contact
forces in robotic grasping and contact tasks. We showed that
Omata and Nagata’s formulation [1] [2], which was origi-
nally derived for power grasps, sometimes generates unrea-
sonable results on possible contact forces. Then we presented
a modified version of their formulation that can exclude such
unreasonable results. We also derived a sufficient condition
to reduce the computation of possible indeterminate contact
forces in our new formulation.

In future work, we will pursue more efficient computation
in the new formulation. The proposed framework should be
applied to various problems of robotic grasping as well as
those of robotic contact tasks [3] [4].
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