Motion Planning of Robot Fingertips for Graspless Manipulation

Yusuke MAEDA* Tomohisa NAKAMURA** Tamio ARAI***

*Yokohama National University **NTT Data Corporation ***The University of Tokyo

- 1. Introduction
- 2. Problem Statement
- 3. Planning of Graspless Manipulation
- 4. Planned Results and Experiments
- 5. Conclusion

Graspless Manipulation

Manipulation without Grasping [Aiyama 1993] (Nonprehensile Manipulation)

Merits of Graspless Manipulation

Manipulation by smaller force

No need to support all the weight of the object

- <u>Manipulation by simple mechanisms</u>
 Use of environment and gravity as virtual fingers
- <u>Manipulation when grasping is impossible</u> e.g. Existence of obstacles

picking up a book from a bookshelf

Planning of Graspless Manipulation

Problem

Manipulation planning: how to generate robot motion to manipulate an object from initial to goal configuration by graspless manipulation

	Analysis required for Planning	Reversibility of Manipulation
Pick-and-Place	Geometry Level (collision avoidance)	Reversible
Graspless Manipulation	Geometry and Mechanics Level (contact forces and gravity)	Possibly Irreversible

Planning of graspless manipulation is difficult

Planning of Graspless Manipulation

Related Works

Motion Planning of Manipulated Object
[Yu 96] [Marigo 00] [Ji 01] [Aiyama 01]...
Planning of Manipulation by Specific Operation
(Pushing) [Kurisu 94] [Lynch 96]...
(Tumbling) [Sawasaki 89] [Yamashita 03]...
(Other) [Trinkle 93] [Terasaki 98] [Erdmann 98]...

Objective

Planning of General Graspless Manipulation

- For various graspless operations
- For manipulation by multiple fingers

Approach

Extension of our previous method [Maeda 2001ICRA]

- Directed graph representation of feasible manipulations
- Graph searching with A* for manipulation planning
- Generation of robust manipulation considering the stability of manipulation

- Quasi-static manipulation of a rigid object
- Under gravity and Coulomb friction
- Each finger is modeled as a sphere
- Finger forces are upper-bounded
- Slipping and rolling of each finger is not allowed
- Each finger is in position- or force-control mode

Planning Problem

Input:

• A series of finger control modes and commands

3. Planning of Graspless Manipulation

Graph Representation of Feasible Manipulation

• Consider (M + 2N)-dimensional C-Space

(*M* : d.o.f of object, *N* : # of fingers)

possible finger locations are restricted on the object surface

• We make nodes by discretizing C-Space

Arc Generation

 Nodes are connected by directed arcs when manipulation is feasible with sufficient stability

Feasibility can be judged by finding a combination of finger control modes and commands that maximizes manipulation stability [Maeda 2003IROS]

Force Control or Position Control? [Maeda 2003IROS]

Two Kinds of Arcs

- Arcs for object displacement
 - Manipulating object without changing fingertip locations on object surface
- Arcs for regrasping

– Reposition of one robot fingertip on object surface without changing object position/orientation

Manipulation Planning by Graph Searching

Constraints

Avoid unstable manipulation

 \Rightarrow Only arcs with large stability is adopted ($z \ge z_{\min}$)

Cost Assignment

- Minimize the number of regrasping
- Minimize the displacement of fingertips
- Maximize the manipulation stability

$$C = \begin{cases} \max_{i} \sum_{j=1}^{P} \left(1 + \frac{X_{\text{stab}}}{z_j} \right) \| \Delta q_{\text{finger } i,j} \| \text{ (cost for object displacement)} \\ X_{\text{regr}} \text{ (cost for regrasping)} \quad (X_{\text{regr}} \gg 1 \gg X_{\text{stab}}/z_{\text{min}}) \end{cases}$$

Planning by A* Search

Heuristic Function for A*

$$H = \begin{cases} \max_{i} \| \Delta q^{*}_{\text{finger } i} \| \\ n_{\text{Viol}} X_{\text{regr}} & \text{If curre} \\ \text{are get} \end{cases}$$

If current fingertip locations are geometrically feasible even in goal configuration

If current fingertip locations are geometrically infeasible in goal configuration

 $\|\Delta q^*_{\text{finger }i}\|$: estimated displacement of *i*-th finger to goal n_{ViOI} : # of fingertips whose locations are infeasible in goal

Find optimal solution by admissible heuristic function

4. Planned Results and Experiments

Example: Graspless Manipulation of a Cuboid by Two Robot Fingers

Mass of object = 1

Friction coef. between environment and object = 0.5

Friction coef. between fingers and object = 0.7

Maximum finger forces = 10 (or 5)

Acceleration of gravity = 9.8

Planned Sliding (for "Strong" Fingers)

Planned Sliding (for "Weak" Fingers)

Planned Tumbling (with a Wall)

Planned Tumbling (with Two Walls)

Computation Time for Planning

(Pentium4-2.8GHz)

Execution of Planned Manipulation

Tumbling by two robot fingers

5. Conclusion

A planning algorithm of graspless manipulation is developed.

Various graspless operations can be generated: pushing, tumbling, etc.

An example of execution of planned manipulation by an actual robot is shown.

Future Work

• Reduction of computation

Randomized Motion Planning Techniques