An Easily Reconfigurable Robotic Assembly System

Yusuke MAEDA
Haruka KIKUCHI
Hidemitsu IZAWA
Hiroki OGAWA
Masao SUGI
Tamio ARAI

The University of Tokyo

Reconfigurability of Assembly Systems

 Reconfigurability is needed for manufacturing systems to cope with market uncertainty [Koren 99]

Removal

Installation

Manipulator4

Manipulator4

Storage3

Manipulator1

Storage2

BeltConvevo

Storage1

 In robotic assembly systems: Quick and easy installation/ removal of robots

Related Works

Actual robotic assembly systems with reconfigurability

- Restructurable Assembly Center [Tamaki 93]
- Cellular Assembly System [Kondoh 98]
- APS (Adaptive Production System) [Hanai 99]

Specially designed hardware for reconfigurability

Objective

 Easily reconfigurable assembly system consisting of conventional devices

Implement "Plug & Produce" function on our robotic assembly system

Plug & Produce

Plug & Produce: System's function that supports physical reconfiguration [Arai 97] [Sugi 03]

- Easy addition/removal of manufacturing devices
- Easy calibration of position/ orientation of newly installed robots
- Management mechanism of positional information of robots

Agenda

- Introduction
- Calibration for Plug & Produce
- Management of Positional Information for Plug & Produce
- Experiment of New Robot Installation
- Conclusion

Targeted Assembly Cell

- Robot, belt conveyor, and storage
- Hand-over parts at shared domains and assemble them at exclusive domains

Calibration for Plug & Produce

Calibration of mutual positional relationship is necessary for coordination

Our Calibration Method [Arai 02]

- Stereo vision based
 (DLT: Direct Linear Transformation)
- Mostly automated
- Minimum modification to robots (LED markers attached)
- No need for calibrated cameras

Uncalibrated Cameras

Calibration Procedure

Accuracy: ~0.5 [mm]

Agenda

- Introduction
- Calibration for Plug & Produce
- Management of Positional Information for Plug & Produce
- Experiment of New Robot Installation
- Conclusion

Graph Representation of Positional Relationships

Graph Representation of Adjacency Information

"adjacency graph"

Workspace Allocation according to Calibration Result

Storage1

- Exclusive (Manipulator1)
 - Exclusive (Manipulator2)
 - Shared (Manipulator1 & Manipulator2)

Plug-in Procedure

Agenda

- Introduction
- Calibration for Plug & Produce
- Management of Positional Information for Plug & Produce
- Experiment of New Robot Installation
- Conclusion

Our Reconfigurable Assembly System

Implementation of System

Java-based Implementation

Plug-in & Assembly (Movie)

Plug-in & Assembly (Gantt Chart)

Summary

- Semi-automated calibration method of robot coordinates for Plug & Produce
- Management of positional information of robots for Plug & Produce
- Experiment of robot installation and assembly

*See also [Arai 03] at ISATP'03 for other system details