A Quantitative Stability Measure for Graspless Manipulation

O Yusuke MAEDA and Tamio ARAI
(The University of Tokyo)

1. Introduction
2. Model of Contact Forces
3. New Stability Measure
4. Numerical Examples
5. Conclusion

1. Introduction

Graspless (Nonprehensile) Manipulation

to Manipulate Objects without Grasping [Aiyama 93]

- No need to support all the weight of objects
- Complement to conventional pick-and-place

Disadvantage of Graspless Manipulation

Less Stability than Pick-and-Place

- Not Form- nor Force-Closure

Evaluation of manipulation stability is important

Stability of Graspless Manipulation

Related Works

[Mason and Lynch 93]
..."Quasi-Static Closure" "Dynamic Closure"
[Trinkle 95]... "First-Order Stability"
[Maeda et al. 96]...Quantitative Stability Measure for
Manipulation without Sliding Contacts
[Yu and Yoshikawa 97]..."Contact Maintainability"
[Kijimoto et al. 99]... Quantitative Stability Measure for Graspless Manipulation with Little Physical Basis

Objective

Quantitative Stability Measure for Graspless Manipulation

- Consideration to gravity and friction
- Applicable to not only pushing but also other graspless operations

2. Model of Contact Forces

Assumptions

- Quasi-Static manipulation of a polyhedral object
- Under gravity and Coulomb friction
- Friction coefficient is uniform on each contact surface
- Static and kinetic friction coefficients are equal
- Each friction cone can be approximated as a polyhedral convex cone

Set of Applicable Contact Forces

Set of Generalized Forces Applicable to Object through Point Contacts

Represented as Union of Polyhedral Convex Cones
[Yu and Yoshikawa 97, 01]

Approximate all the contacts with point contacts

Friction on Surface Contact

Representative Points

Stationary or in Translation

in Rotation

Surface Contact in Rotation

COR = Center Of Rotation

- Case 1: Instantaneous COR is outside the contact surface

Instantaneous

- Case 2: Instantaneous COR is on the contact surface

Case 1: COR is outside the contact surface

Contact forces on each half-line have the same direction vector

Approximation by
 Finite Representative Points

Case 2: COR is on the contact surface

Contact forces on each half-line have the same direction vector

3. New Stability Measure

Two Types of Stability of Graspless Manipulation

1. Ability of manipulated objects to resist disturbing force without changing their motion
2. Ability of manipulated objects to resume their original motion after a perturbation by disturbing force

Our Stability Measure

Magnitude of disturbing (generalized) force that the object can resist without changing its motion

$$
z=\min _{\left\|\hat{Q}_{\text {dist }}\right\|_{M}=1} \max _{Q_{\text {known }}+Q=-t \hat{Q}_{\text {dist }},}\left\|\boldsymbol{Q}_{\text {known }}+\boldsymbol{Q}\right\|_{M}
$$

\boldsymbol{Q} : Resultant Contact Force
$\boldsymbol{Q}_{\text {known }}$: Known External Force (gravity, etc.)
$\hat{\boldsymbol{Q}}_{\text {dist }}$: Direction Vector of (Unknown) Disturbing Force

$$
\|\boldsymbol{Q}\|_{\boldsymbol{M}}=\sqrt{\boldsymbol{Q}^{T} \boldsymbol{M}^{-1} \boldsymbol{Q}}
$$

M : Inertia Matrix of Object

Discussion about Stability Measure

Stability Value z :
Magnitude of Resistible Disturbance in the "Weakest" Direction
$z>0 \quad$... Disturbance smaller than z cannot perturb object motion
\square Stable Manipulation
$z=0 \quad \ldots$ Infinitesimal disturbance can perturb object motion
\square Unstable Manipulation

Calculation of the Stability Value by Linear Programming

(Numerical Examples: 76 vertices)

4. Numerical Examples

Graspless Manipulation of a Cuboid

Manipulation by Two Position-Controlled Robot Fingers

Size of Object: $2 \times 2 \times 1$
Mass of Object: 1
Friction coefficient: 0.2

Translation by Pushing

Rotation by Pushing

Stability $=4.2$
$\left\{\begin{array}{l}4.1 \\ 0.7\end{array}\right.$
Stable

Calculation Time:
1.3 CPU Seconds
(Pentium4-1.5GHz)

6. Conclusion

Summary

- A quantitative stability measure for graspless manipulation
- Calculation method of the measure by linear programming

Future Work

- Application to Planning of Graspless Manipulation

