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Background
 Object segmentation in a scene
• For singulation, sorting, picking, …
• Novel objects
• Cluttered environment

 Difficult through passive perception
 Interactive Perception
• Active perturbation to a scene for better perception
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Related Works
 “Poking” and “prodding” for object segmentation 

[Metta and Fitzpatrick 03]
 Pushing for object singulation

[Chang et al. 12] [Hermans et al. 12] [Katz et al. 14]
 “Spreading” and “tumbling” for object sorting

[Gupta et al. 15] 
 Pushing for 3D object segmentation

[Schiebener et al. 14]
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Local scene perturbation through direct contacts
between the robot and objects

• Need to contact with target objects
• Occlusion by robot bodies
• Time required for perturbation



Objective
 Segmentation and picking of novel objects 

through “global” scene perturbation
 Approach: Impacting
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• 2D
• Rigid objects



Overview of Object Segmentation (1/3)

 Before impacting
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Overview of Object Segmentation (2/3)

 After impacting
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Overview of Object Segmentation (3/3)

 After impacting
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Features for Keypoint Detection
 SIFT

• Mainly for textured 
objects
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 Harris Corner

• Mainly for textureless
objects

128-dimensional SIFT descriptors are used for both



Keypoint Detection
 SIFT
 Harris Corner
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Keypoint Tracking
 Matching according to Euclidean SIFT distance
 Assumption: Keypoint movement is small
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Keypoint Grouping
 RANSAC-based grouping of keypoint pairs 

consistent with a rigid-body motion
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RANSAC-based Keypoint Grouping (1/3)
1. Sample two keypoint pairs.
2. Calculate a homogeneous transformation that 

corresponds to the sampled pairs.
3. Vote a similar existing transformation, if any.
4. Select homogeneous transformations with 

sufficient votes for object candidates.
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Repeat these steps



RANSAC-based Keypoint Grouping (2/3)
5. Collect all the keypoint pairs to be grouped for 

each of candidate homogeneous 
transformations
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RANSAC-based Keypoint Grouping (3/3)
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6. Re-calculate homogeneous transformation 
using all the grouped keypoint pairs [Arun et al. 87]

 Initial homogeneous transformation might have 
nontrivial errors

7. Re-group keypoint pairs using the new 
transformation



Object Segmentation
 Grouped keypoints are segmented as an α-shape
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 Convex hull  α-hull α-shape

[Pateiro-López and Rodrguez-Casal 2010]

Concave shapes can be segmented
• We use minimum α that keeps the segment connected



Experimental Setup
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Objects

Manipulator

CCD Camera

Bin
Gripper

𝜃

𝜃 5°

Object: Mahjong tiles
Camera: 1296x964 grayscale
Parallel-jaw Gripper: shock-
absorbing spring installed



Experiments on Object Segmentation 
 α-shape with minimum area is selected as a 

picking target
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Successful segmentation was possible in most cases



Experiments on Object Segmentation 
 A typical segmentation failure
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Grasp Synthesis for Segmented Object
 Finding near-parallel edges for parallel-jaw 

gripper
• Adapt the method by [Harada et al. 2011] for 2D cases
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Picking Experiment (1/4)
 L-shaped object
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Picking Experiment (2/4)
 Two objects
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Picking Experiment (3/4)
 One object on fake objects
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Picking Experiment (4/4)
 Unsuccessful Picking
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First object: incorrect segmentation (larger than actual)

Third object: grasp attempt for longer sides



Conclusion
 Object segmentation through impacting
• Successful segmentation and picking of mahjong tiles 
demonstrated

• Better accuracy
• Wider variety of objects
• Single impacting for 
multi-object picking

• Efficient computation
• Extension to 3D
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Future Work


