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SLAM-Integrated Kinematic Calibration (SKCLAM)
SLAM (Simultaneous Localization and Mapping) techniques can be applied to industrial manip-
ulators for 3D mapping around them and calibration of their kinematic parameters. We call this
“SKCLAM” (Simultaneous Kinematic Calibration, Localization and Mapping). Using an RGB-
D camera attached to the end-effector of a manipulator (Fig. 1), we demonstrated successful
SKCLAM in a virtual environment (Fig. 2) and a real environment (Fig. 3) [1][2]. We are also
studying SKCLAM with spherical cameras [3] and stereo cameras [4].
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Fig. 1 Manipulator Equipped
with an RGB-D Camera Fig. 2 SKCLAM in Virtual Environment

Fig. 3 Example of an Obtained 3D Map
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Robot Teaching
Teaching is indispensable for current industrial robots to execute tasks. Human operators have to
teach motions in detail to robots by, for example, conventional teaching/playback. However, robot
teaching is complicated and time-consuming for novice operators and the cost for training them
is often unaffordable in small-sized companies. Thus we are studying easy robot programming
methods toward the dissemination of robot utilization.

Robot programming with manual volume sweeping We developed a robot programming
method for part handling [1][2]. In this method, a human operator makes a robot manipulator
sweep a volume by its bodies. The swept volume stands for (a part of) the manipulator’s free
space, because the manipulator has passed through the volume without collisions. Next, the
obtained swept volume is used by a motion planner to generate a well-optimized path of the
manipulator automatically. The swept volume can be displayed with Augmented Reality (AR)
so that human operators can easily understand it, which leads to efficient robot programming
[3] (Fig. 4).

Assisting Online Robot Programming We are developing a support system for online robot
programming using an optical see-through AR device that can overlay useful information on a
real robot such as its movable area (Fig. 5). The system also supports the above robot program-
ming with manual volume sweeping [4]. Another support system for online robot programming
is also developed. In this system, it is possible to group and move existing teaching points,
and generate robot motions that connect the points. This is useful for adaptation to product
specification changes in robotic assembly [5].
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Fig. 4 AR Display of Swept Volume and Planned Path
Fig. 5 AR Display of Movable
Area with Fixed Gripper Pose
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View-Based Teaching/Playback
We developed a teaching/playback method based on camera images for industrial manipulators
[1][2]. In this method, robot motions and scene images in human demonstrations are recorded to
obtain an image-to-motion mapping, and the mapping is used for playback (Fig. 6). It can achieve
more robustness against changes of task conditions than conventional joint-variable-based teach-
ing/playback. Our method adopts end-to-end learning through view-based image processing and
therefore neither object models nor camera calibration are necessary. We are improving our view-
based teaching/playback by using range images (Fig. 7) and occlusion-aware techniques for more
robustness [3]. For application to force-control tasks, visualization of force information based on
photoelasticity (Fig. 8) is under investigation [4]. We are also trying to integrate reinforcement
learning with the view-based teaching/playback for reduction of human operations for teaching
[5].
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Fig. 6 Outline of View-Based Teaching/Playback
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Fig. 8 View-based Teaching/
Playback with Photoelasticity
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Caging and Caging-based Grasping
Caging is a method to constrain objects geometrically so that they cannot escape from a “cage”
constituted of robot bodies.

3D multifingered caging While most of related studies deal with planar caging, we study three-
dimensional caging by multifingered robot hands (Fig. 9). Caging does not require force con-
trol, and therefore it is well-suited to current robotic devices and contributes to provide a variety
of options of robotic manipulation. We are investigating sufficient conditions for 3D multi-
fingered caging and developing an algorithm to plan hand motions for caging based on the
conditions [1]. Robot motions generated by the developed planning algorithm were validated
on an arm-hand system [2] (Fig. 10).

Caging-based Grasping Position-controlled robot hands can capture an object and manipulate
it via caging without force sensing or force control. However, the object in caging is movable in
the closed region, which is not allowed in some applications. In such cases, grasping is required.
We proposed a new simple approach to grasping by position-controlled robot hands: caging-
based grasping by robot fingers with rigid parts and outer soft parts. In caging-based grasping,
we cage an object with the rigid parts of a robot hand, and construct a complete grasp with
the soft parts of the hand. We are studying the formal definition of the caging-based grasping
and concrete conditions for caging-based grasping in planar and spatial cases. Based on the
derived conditions, we demonstrated planar caging-based grasping by mobile robots and spatial
caging-based grasping by a multifingered hand (Fig. 11) [3][4]. We also extend the theory of
caging-based grasping so that it can deal with deformable objects (Fig. 12) ([5]).
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Fig. 9 3D Multifin-
gered Caging

Fig. 10 Caging of a
Sphere

Fig. 11 Caging-
based Grasping by a
Multifingered Hand

Fig. 12 Caging-
based Grasping of a
Deformable Object
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Caging Manipulation
Caging is a method to make an object inescapable from a closed region geometrically. We study
robotic manipulation with caging, or “caging manipulation.”

In-Hand Caging Manipulation Pose of objects caged in robot hands can be controlled to some
extent by changing hand configurations. We call it “in-hand caging manipulation.” It enables
position-controlled robot hands to perform robust in-hand manipulation. A planning algorithm
for in-hand caging manipulation was developed [1][2]. We are also studying various forms of
in-hand caging manipulation [3] including versatile part feeders [4] (Fig. 13).

Cooperative Caging Manipulation The object is not fully constrained in caging. This nature
enables cooperative manipulation based on position control without excessive internal forces.
We study dual-arm cooperative manipulation of long objects with caging or caging-based grasp-
ing (Fig. 14) [5]. It does not require force control, and can deal with a variety of objects by
using appropriate end-effectors.
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Fig. 13 A Versatile Part
Feeder with In-Hand Caging
Manipulation

(a) wire harness (b) long pipe

Fig. 14 Dual-arm Cooperative Manipulation with Caging
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Photoelastic Force Distribution Sensing and Its Applications
Photoelasticity enables us to conduct pixelwise stress analysis by using a photoelastic body, a po-
larized light source and a polarization camera. The distribution of contact forces at the photoelastic
body can also be estimated. We developed a robot finger equipped with a photoelastic fingertip
(Fig. 15), which can perform online contact force distribution sensing and contact force control
[1]. We also developed a robot hand with photoelastic links (Fig. 16) with force sensing ability
[2].
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Fig. 15 A robot finger with photoelastic fingertip
Fig. 16 A robot hand composed
of photoelastic bodies
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Handling of Various Objects by Robots
Techniques for robotic manipulation of a variety of objects are under investigation.

Vision-Based Object Picking We are developing an impacting-based method to detect
unknown objects for picking, in which visual feature tracking is used (Fig. 17) [1].

3D Block Printing We developed a robotic 3D printer: a robot system that can assemble toy
brick sculptures from their 3D CAD models [2][3][4]. In this system, a 3D CAD model is auto-
matically converted to a block model consisting of primitive toy blocks. Then an assembly plan
of the block model is automatically generated, if feasible. According to the plan, an industrial
robot assembles a brick sculpture layer by layer from bottom to top. We demonstrate successful
assembly of several brick sculptures (Fig. 18).

Robotic Origami Folding We are developing a robot system that can fold origami works
(Fig. 19). A cutting plotter and robot arms are used to automatically fold paper cranes [5].
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Fig. 17 Impacting-based Picking

Fig. 18 3D Block Printing
Fig. 19 A Robot System to
Fold a Paper Crane
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Intelligent Heavy Equipment Systems
Automation and intellitization of heavy machinery is immensely demanded for higher efficiency
and safety. We study traffic control of dump truck fleets in mines (Fig. 20) to improve productivity.
A combinatorial optimization method is developed for the order of passing intersections and tested
on a simulator (Fig. 21) [1][2]．
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Digital Modeling of Humans and Its Applications
We are conducting some studies on digital modeling of humans and its applications, jointly with
Living Activity Modeling Research Team, AIST.

Grasp Synthesis for Digital Hands Digital hands can be used to synthesize grasps for sup-
porting ergonomic product design (Fig. 22) [1]. Grasps by hands of patients with carpal tunnel
syndrome and elderly people can be simulated (Fig. 23) [2][3].

Risk Visualization using Digital Human Models We are developing a system to visualize in-
jury risks for children using their digital human models. The reachability analysis with the
models can estimate the risks of accidental ingestion and burns at home (Fig. 24) [4].
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Application of Robot Technology to Human Activity Support
Robot technology should be applied to various fields to support human activities. For example,
home appliances would be robotized more and more to help our daily life intelligently and ef-
fectively. We have a proposal on smart dishwashers: our proposed system can support users’
dishwasher loading [1][2][3]. This system can recognize dishes from a picture of a dining table
after a meal. Then the system calculates the optimal placement of the recognized dishes in the
dishwasher and presents the result to users as 3D graphics (Fig. 25).

We are also developing a support system for human origami folding [4]. It is composed of an
origami simulator for design and display of origami folding processes (Fig. 26) and a cutting
plotter for adding crease pattern automatically. The system can be used in childhood education
and elderly care.
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(a) Calculated Result (b) Loaded Dishes

Fig. 25 Optimized Dish Loading Fig. 26 Origami Simulator
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